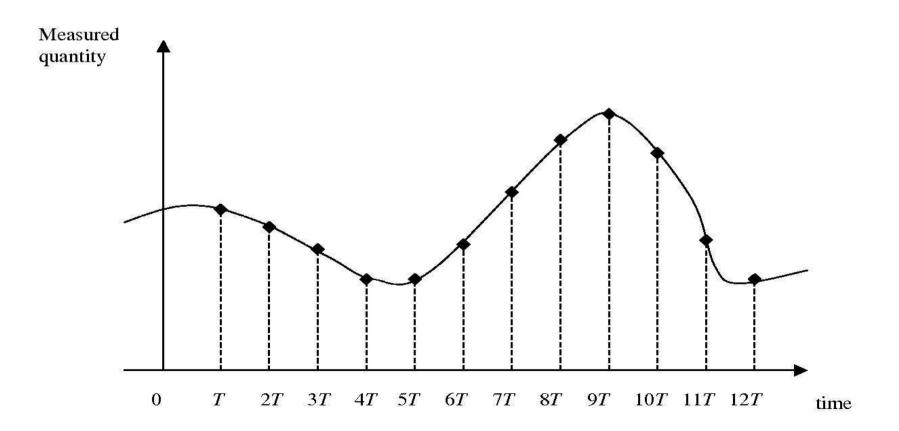
First steps in digital signal processing

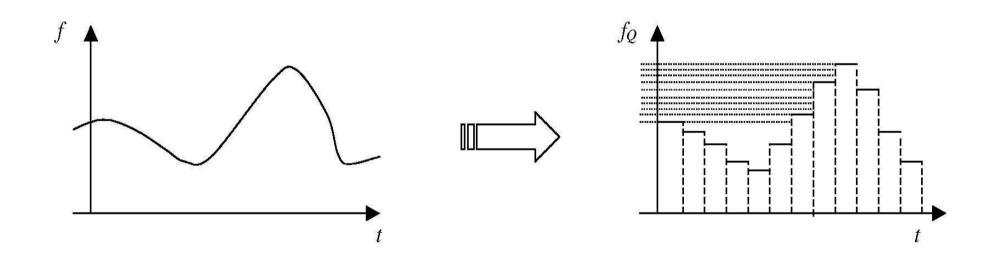
John Coleman

Phonetics Laboratory University of Oxford

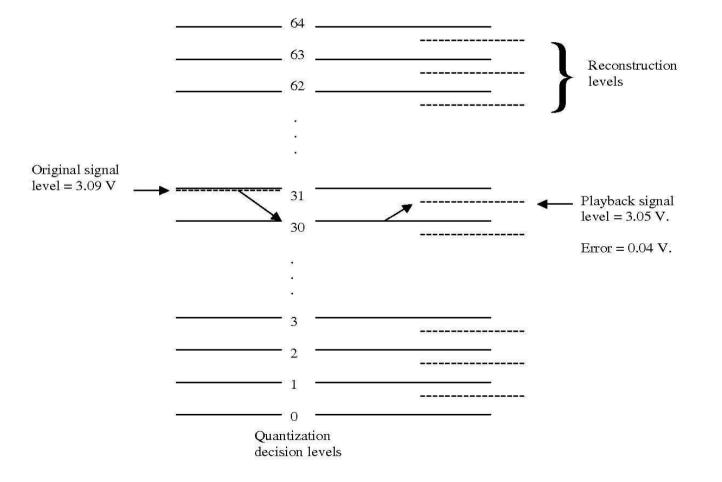
Analogue-to-digital conversion 1: Sampling



Analogue-to-digital conversion 2: Quantization



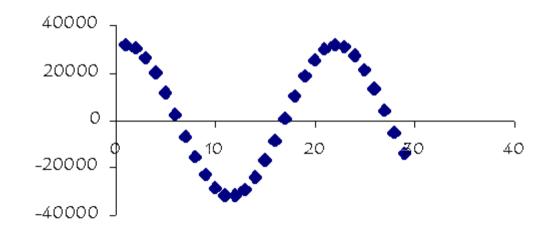
D-to-A, quantization error



D-to-A, quantization error

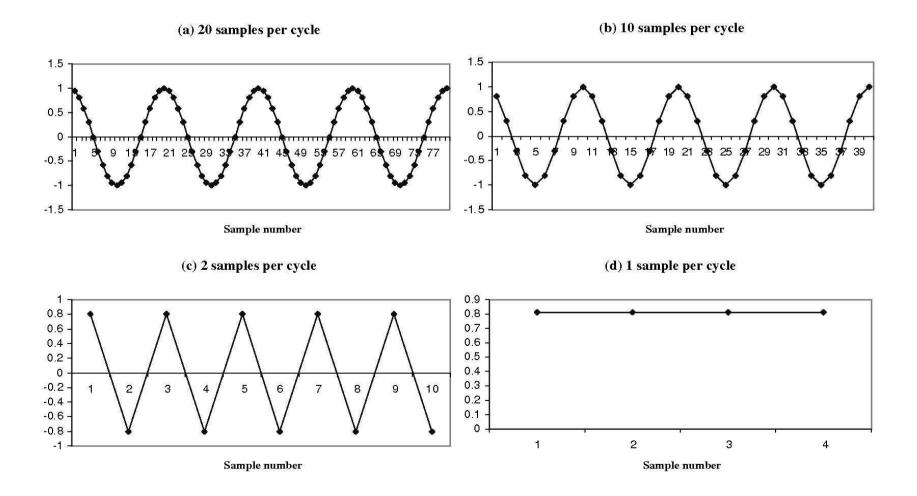
- To reduce the quantization error, use more levels (dynamic range):
- 8 bits: $2^8 = 256$ levels
- 12 bits: $2^{12} = 4096$ levels
- 16 bits: $2^{16} = 65536$ levels

Pulse Code Modulation (Alec Reeves 1937)



Sampling theorem; Nyquist frequency

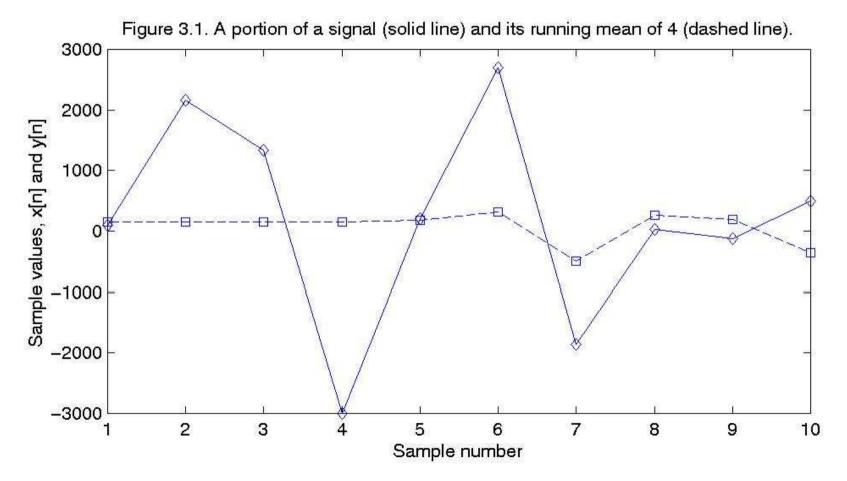
• Sampling rate must be at least twice the highest frequency you want to capture



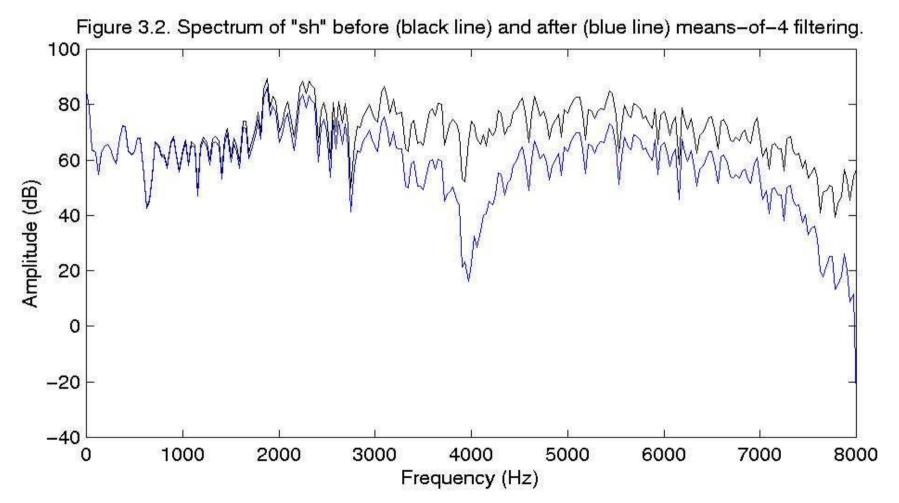
Operations on sequences of numbers

- Let's call the sample number i and the i'th sample x[i]
- **Sum** or **integral**, Σx[i].
- If x[i] has positive and negative values, take |x[i]| the absolute (i.e. unsigned) value of x[i].
- Or, first calculate the square of x[i], $x[i]^2$, and then take the square root, $\sqrt{(x[i]^2)}$. $\Sigma\sqrt{(x[i]^2)}$ is a measure of the overall energy of a signal.
- x[i]² gets bigger and bigger as x[i] gets longer.
- The *average* amplitude of a signal, calculated over n samples: $\sqrt{(\Sigma x[i]^2/n)}$. This is called the *root mean square* or RMS amplitude.

Local (moving) average e.g., y[n] = ¹/₄ x[n] + ¹/₄ x[n-1] + ¹/₄ x[n-2] + ¹/₄ x[n-3]



Local (moving) average Effect: low-pass filtering



Time-domain filtering

4 samples is very short, so its effects are very local – high frequency components. To smooth over a larger slice of the signal, we can do two things:

a) increase the number of samples in x[n] ... x [n-m]

b) make y[n] depend in part on its own previous value, y[n–1], or several previous values.

Time-domain filtering

• A filter of the second kind has the general form:

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-1] + \dots + b_k x[n-k] - a_1 y[n-1] + \dots + a_j y[n-j]$$

• By varying the a's, b's, and the number and spacing of previous x and y samples, a variety of filters with various kinds of frequency-selecting behaviours can be constructed.

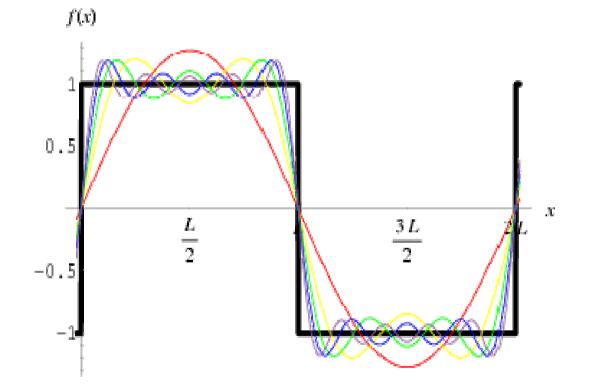
Linear Prediction (preview) • $y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-1] + ... + b_k x[n-k] - a_1 y[n-1] + + a_j y[n-j]$

• We can estimate the magnitude of the current sample as a linear combination of the previous p samples (typically 12 to 18 samples):

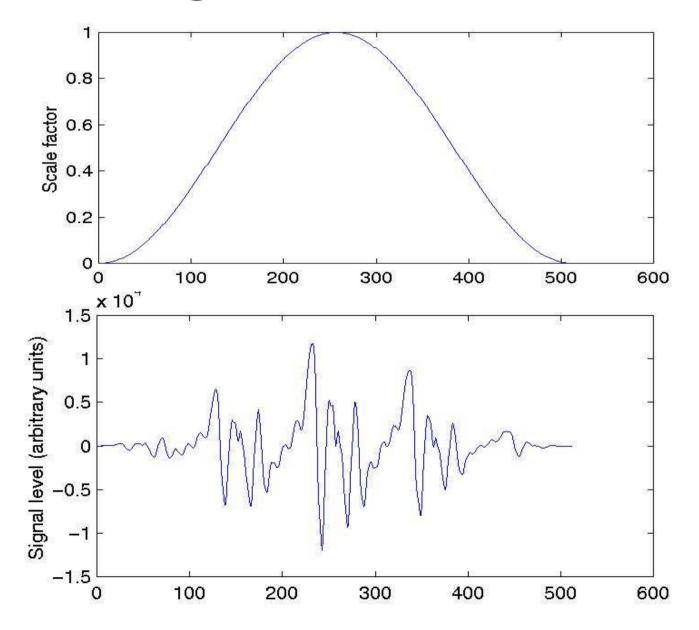
•
$$x[t] = -a_1 x[t-1] - a_2 x[t-2] - a_3 x[t-3] ... - a_p x[t-p] + e[t]$$

Fourier (Spectral) Analysis

Jean Baptiste Joseph Fourier (1768-1830)

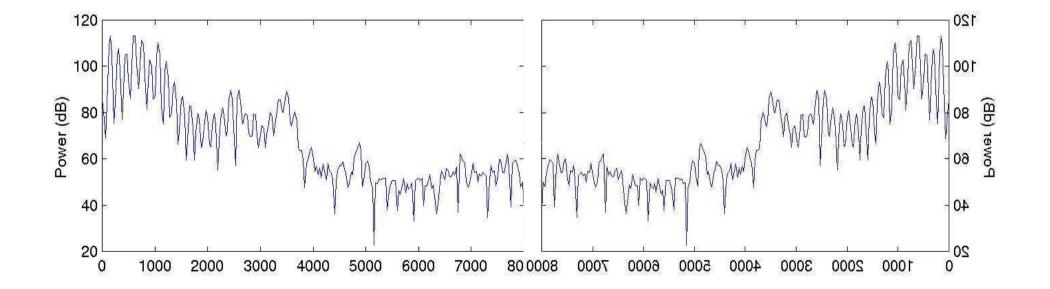


Windowing



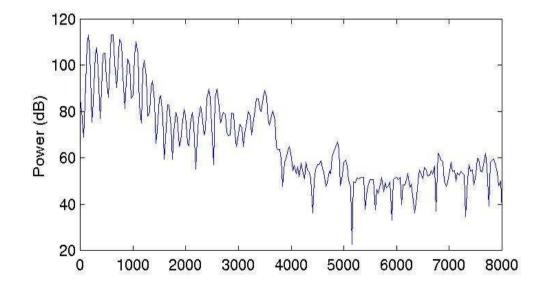
Fast Fourier Transform

- Cooley and Tukey, mid 1960's
- e.g. for Power Spectrum

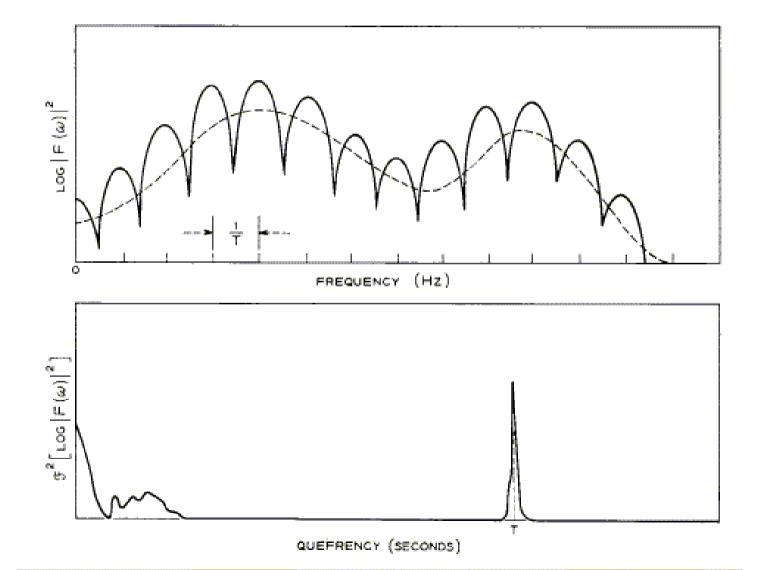


Fast Fourier Transform

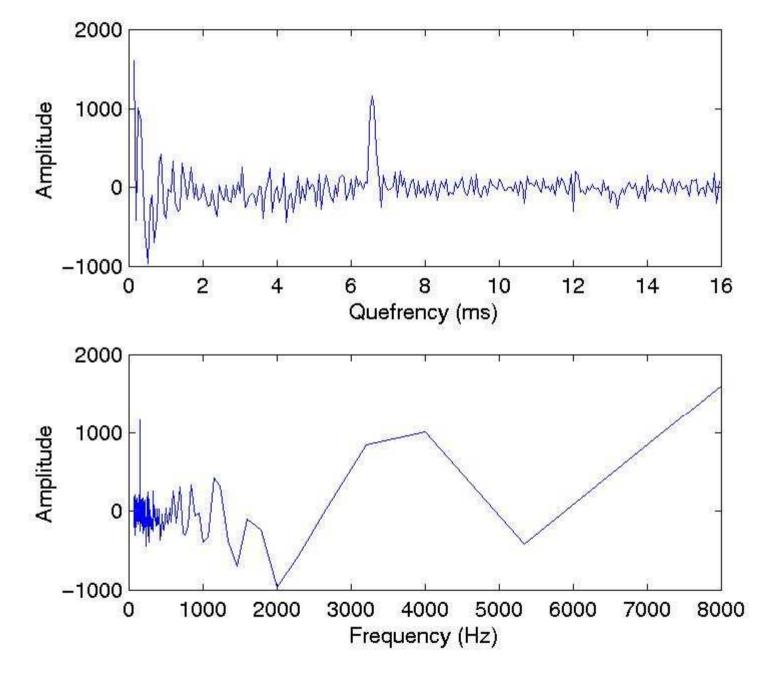
- Cooley and Tukey, mid 1960's
- e.g. for Power Spectrum



Cepstrum (Noll 1967)



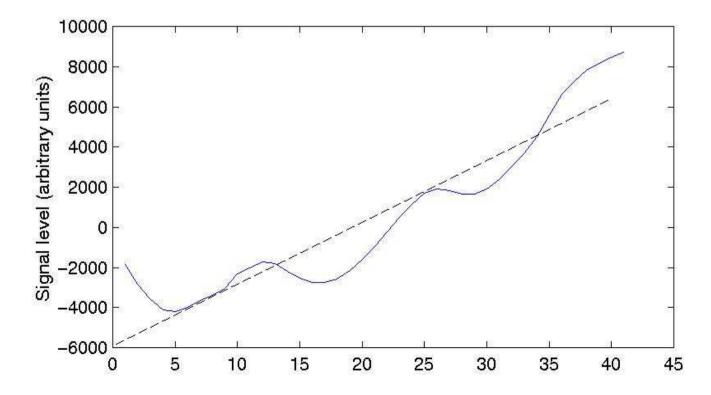
Cepstrum



Linear Prediction of speech

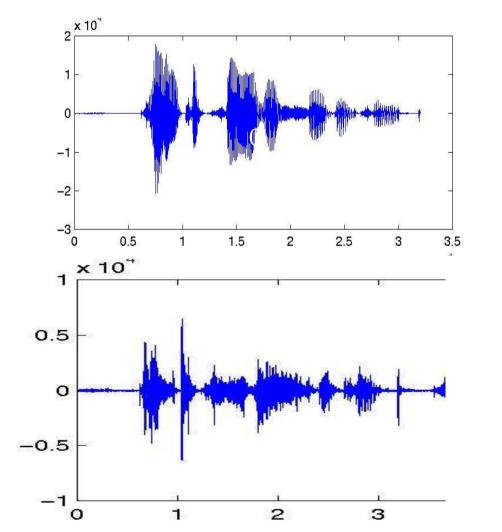
• We estimate the current sample as a linear combination of the previous p samples:

•
$$x[t] = -a_1 x[t-1] - a_2 x[t-2] - ... - a_p x[t-p]$$



+ e[t]

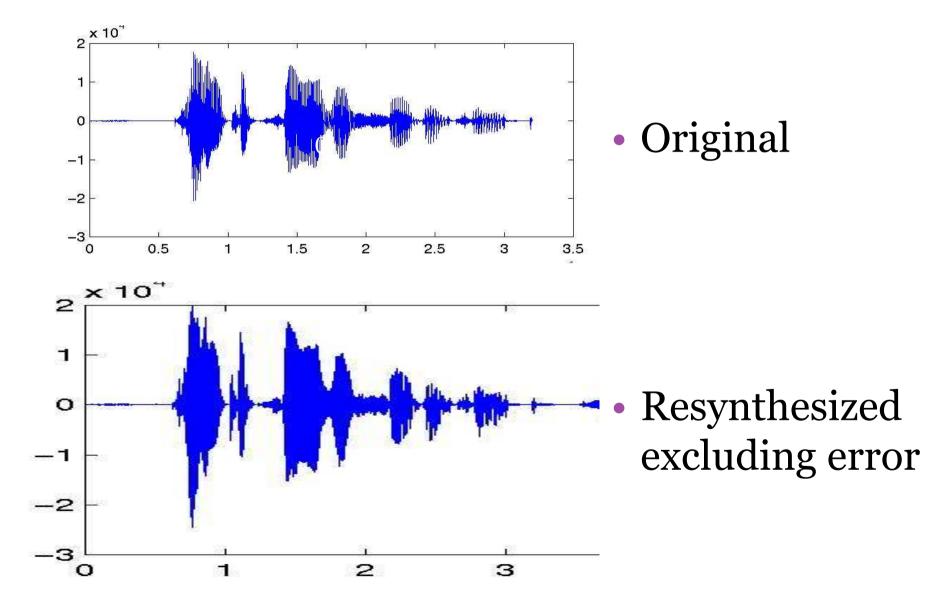
Linear Prediction of speech



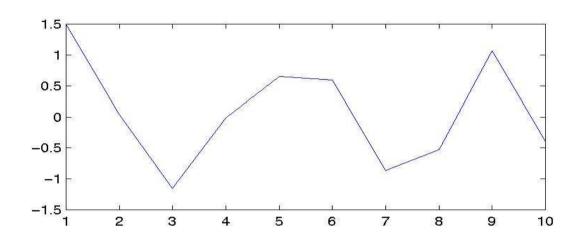
Original

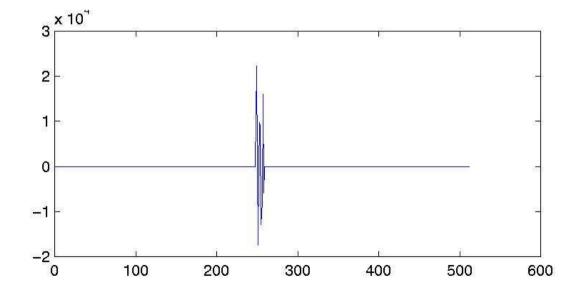
• Error

Linear Prediction of speech



A magic trick

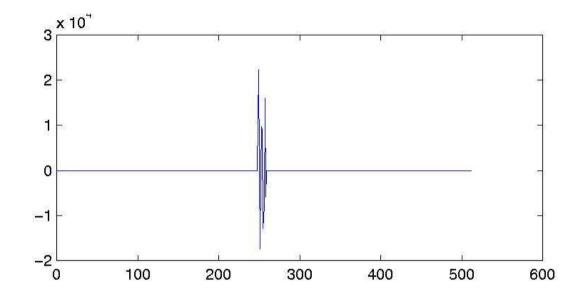




 10 LPC coefficients from an [a]

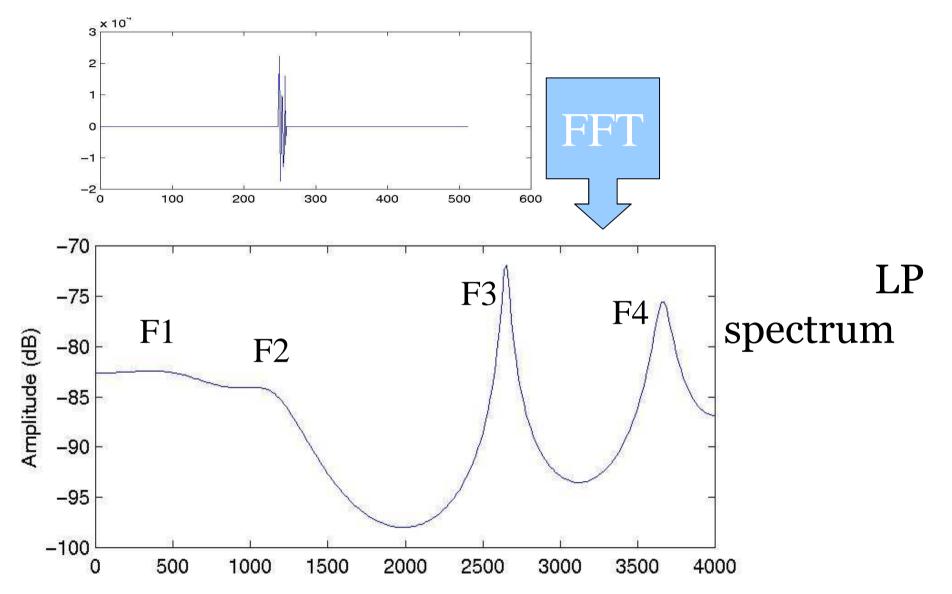
 Same 10 coeffs, scaled up and zero-padded to 512 samples long
(251 each side)

A magic trick



 Same 10 coeffs, scaled up and zero-padded to 512 samples long

A magic trick



Shameless plug

Cambridge Introductions to Language and Linguistics

Introducing Speech and Language Processing

John Coleman

pattern-recognition

