

Investigating some Chinese dialects using Functional Data Analysis

John Aston

Department of Statistics

University of Warwick

17 February 2012

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Acknowledgements

Joint work with

- Jeng-Min Chiou Institute of Statistical Science, Academia Sinica
- Jonathan Evans Institute of Linguistics, Academia Sinica
- Pantelis Hadjipantelis Complexity Science and Dept of Statistics, University of Warwick

Many thanks to SAMSI and EPSRC for support for the work

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

Tones in Mandarin

Tone1 媽 "mother" Tone2 麻 "hemp" Tone3 馬 "horse" Tone4 罵 "scold" Tone5 嗎 question particle

Qiang Speech Signal

- 2

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

Example of F0 data

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

For a

- set of observations y,
- a set of covariates X,

The data is modelled as

$$y = X\beta + \epsilon$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

where

- β is the effect of the covariates,
- ϵ is the error assumed to be distributed $N(0, \sigma^2)$.

Linear Mixed Models

For a

- set of observations y,
- a set of fixed covariates X,
- a set of (mean-zero Gaussian) random covariates Z,

The data is modelled as

$$y = X\beta + Z\gamma + \epsilon$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where

- β is the effect of the covariates,
- γ is assumed to be distributed $N(0, \sigma_{\gamma}^2)$
- ϵ is the error assumed to be distributed $N(0, \sigma^2)$.

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

Parameter Estimation and Inference

- Maximum Likelihood (ML)
 - Estimates of Fixed Effects and Random Effects
 - Biased Estimates of the Random Effect Variances
- Restricted Maximum Likelihood (ML)
 - Estimates of Random Effects
 - Unbiased Estimates of the Random Effect Variances

Procedure

1. ML and Parametric Bootstrap to choose variables in model

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

2. ReML to find variance estimates in chosen model

Phonetics

MM •0000000 FPCA

Qiang

Mandari

Summary

Qiang Language and People

▶ Ξ • • 0 < 0</p>

Phonetics

MM •0000000 FPCA

Qiang

Mandari

Summary

Qiang Language and People

E ∽ Q (?

Phonetics

MM •0000000 FPCA

Qiang

Mandari

Summary

Qiang Language and People

Qiang Language and People

Qiang Language

- Tibeto-Burman Language
- Spoken by about 100,000 people
- Two distinct varieties (Northern and Southern)
- Many dialects the one under investigation is Luobuzhai Qiang (a southern variety)
- Tonal language with 2 known tones, but very little studied

(ロ) (型) (E) (E) (E) (O)

No written form

	123	0		

MM 00000000 FPCA

Qiang

Mandari

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Summary

Words in Study

No	Form	tones	Glossary
1	/dzù 'bè/	LL	star
2	/dzə́ 'ɕí/	нн	day before yesterday
3	/'lí phò gè/	HLL	trumpet
4	/tcè 'pjá вè gè/	LHLL	corn cake
5	/pù qhà pà (gé)/	LLLH	large intestine
6	/dzò dzò gé/	LLH	ruler
7	/pú sú stsà (gè)/	HHLL	youth (n.)
8	/mù tɕhàn 'thá mí/	LLHH	robber
9	/ˈtshà tʂú qò qò/	LHLL	storage room door
10	/sì 'phú grà/	LHL	root fibers
11	/cí tsú 'piàn tsè/	HHLL	river bank
12	/biá n,ú pì 'qhuá/	HHLH	female panda
13	/pù qhà 'pà/	LLL	large intestine
14	/ptú/	Н	flai
15	/tcè 'pjá/	LH	corn cake
16	/tʂhə̀ (ʂ)tə́ 'quá/	LHH	stomach
17	/biá nú zdó/	ннн	male panda
18	/p ^s ı/	L	snow
19	/lì 'χà sò gé/	LLLH	t en dern es s

Forms are given in International Phonetic Alphabet. No local writing system is available for Luobuzhai Qiang.

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

Linguistic Effects

Factors	Expected effects
Tone	F0 of tone category.
Lexical stress	Broader F0 range in a tone language.
Vowel height	Higher vowels have higher F0.
Consonant voicing	Voiceless consonants raise F0 on neighbouring vowel.
Previous/following tone	Assimilatory effects.
Location of syllable within word	Downtrend is expected.
Sex of speaker	Men typically have lower F0.
Age of speaker	Decrease in F0 with age.
Sentence condition	F0 may be shifted.
Word	Allows lexical F0 to vary.
Speaker idiosyncrasies	F0 affected by speaker characteristics

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Initial Model:

```
F0_{med} \sim previous*tone*following + gender*tone*condition + previous*voice + tone*intensity*condition + tone*syllable + vowel + age*gender + word + speaker*gender
```

(ロ) (型) (E) (E) (E) (O)

Final Model:

 $F0_{med} \sim previous*tone*following + gender*condition + tone*condition + tone*syllable + vowel + word + speaker$

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Median Model Results

	Est (Hz)	Std (Hz)	t value	HPD I(Hz)	HPD u(Hz)
(Intercept)	377.02	9.31	40.5	355.16	398.45
previousH	6.64	4.55	1.5	-2.40	15.49
previousL	9.84	3.88	2.5	2.12	17.44
toneL	-69.60	4.07	-17.1	-77.73	-61.77
followingL	30.98	4.84	6.4	21.31	40.89
male	-78.34	11.65	-6.7	-106.71	-49.91
constrast	-25.11	2.06	-12.2	-29.27	-21.19
question	-45.00	2.05	-21.9	-48.96	-40.93
syllable	-25.52	1.58	-16.2	-28.67	-22.41
/a/	4.61	2.62	1.8	-0.59	9.80
/e/	11.93	3.01	4.0	5.93	17.83
/i/	23.26	2.99	7.8	17.41	29.13
/u/	20.28	3.05	6.7	14.14	26.42

Phonetics	MM ००००००●०	FPCA	Qiang	Mandarin	Summary
			F (C		

Random Effects

Groups	Name	Std.Dev.	HPD 95%	HPD u 95%
word	(Intercept)	9.3 Hz	6.9 Hz	14.9 Hz
speaker	(Intercept)	16.9 Hz	9.8 Hz	33.7 Hz
Residual		17.2	16.6 Hz	17.9 Hz

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Phonetics	MM ०००००००●	FPCA	Qiang	Mandar	in	Summary
		Lingui	stic Effec	ts		
Factor	s		Expected	effects		
Tone			F0 of tone	e category.		
<mark>Lexica</mark> Vowel	l stress height		Broader F Higher vov	<mark>0 range in a t</mark> wels have hig	t <mark>one lang</mark> her F0.	Jage.
Conso	nant voicing		Voiceless neighbour	consonants ing vowel.	raise F() on
Previo	us/following t	one	Assimilato	ory effects.		
Locati word	on of syllable	e within	Downtren	d is expected.		
Sex of	speaker		Men typic	ally have lowe	er F0.	
Age of	f speaker		Decrease	in F0 with ag	e.	
Senter	nce condition		F0 may be	e shifted.		
Word			Allows lexical F0 to vary.			
Speak	er idiosyncrasi	es	F0 affecte	d by speaker	character	istics

<ロ> (四) (四) (三) (三) (三)

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

Phonetics	MM 00000000	FPCA	Qiang	Mandarin	Summary
		-	_		

Curves as Data

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Phonetics	MM 0000000	FPCA	Qiang	Mandarin	Summary

Functional Principal Component Analysis

Let $Y_i(t)$, $t \in T = [0, 1]$, i = 1, ..., n be data sampled from a Gaussian stochastic process on the domain T.

$$Y_i(t) = \mu(t) + \sum_{j=1}^{\infty} A_{i,j} \phi_j(t)$$

where $\phi_j(t)$ is the *j*th basis function and $A_{i,j}$ is the weight associated with the *i*th curve and the *j*th basis function. $\mu(t)$ is the overall mean of the sampled processes. Essentially the process is modelled as a mean function coupled with a stochastic basis expansion component.

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Qiang Functional Principal Components

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

An estimate of the mean function $\hat{\mu}(t_j)$ can be simply calculated from the mean of the data.

The eigenfunctions are then determined from a spectral analysis of the estimated covariance matrix

$$\hat{C}(t_k, t_l) = \frac{1}{n} \sum_{i=1}^n \left(Y_i(t_j) - \hat{\mu}(t_j) \right) \left(Y_i(t_l) - \hat{\mu}(t_l) \right), \quad k, l = 1, \dots, m$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Eigenvalues and Eigenfunctions

This yields the estimated eigenfunctions $\hat{\phi}_j(t)$ as

$$\hat{C}(t_k,t_l) = \sum_{j=1}^m \hat{\lambda}_j \hat{\phi}_j(t_k) \hat{\phi}_j(t_l)$$

with ordered eigenvalues $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_m$. The FPC scores $A_{i,j}$ are then estimated by discrete approximation

$$\hat{A}_{i,j} = \sum_{k=1}^{m} \left(Y_i(t_k) - \hat{\mu}(t_k) \right) \hat{\phi}_j(t_k) \Delta_k$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $\Delta_k = t_k - t_{k-1}$.

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

Covariance and Components

Mean function and eigenfunctions for the first 3 components which account for 99.8% variance in the data, along with the estimated covariance function of the data.

For each sample process Y_i , two sets of scalar covariates X_i and Z_i are available. X_i are fixed effects, such as tone, while Z_i are zero-mean Gaussian random effects, such as speaker. The following model is proposed:

$$E(Y_{i}(t)|X_{i}, Z_{i}) = \mu(t) + \sum_{j=1}^{\infty} E(A_{i,j}|X_{i}, Z_{i})\phi_{j}(t)$$
$$E(A_{i,j}|X_{i}, Z_{i}) = X_{i}\beta^{(j)} + Z_{i}\gamma^{(j)}, \quad \gamma^{(j)} \sim N(0, \Sigma_{\gamma^{(j)}})$$

 ∞

where $\phi_j(t)$ is the *j*th basis function and $A_{i,j}$ is the weight associated with the *i*th curve and the *j*th basis function. $\mu(t)$ is the overall mean of the sampled processes. In practice the summation is taken to K rather than ∞ .

Intuitive idea behind their use

Pachelbel's Canon From Wikipedia, the free encyclopedia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

FPCA-LME Qiang Model

$$E(Y_{i}(t)|X_{i}, Z_{i}) = \mu(t) + \sum_{j=1}^{K} E(A_{i,j}|X_{i}, Z_{i})\phi_{j}(t)$$
$$E(A_{i,j}|X_{i}, Z_{i}) = X_{i}\beta^{(j)} + Z_{i}\gamma^{(j)}, \quad \gamma^{(j)} \sim N(0, \Sigma_{\gamma^{(j)}})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

but how to choose K - the number of components.

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

FPCA-LME Qiang Model

$$E(Y_i(t)|X_i, Z_i) = \mu(t) + \sum_{j=1}^{K} E(A_{i,j}|X_i, Z_i)\phi_j(t)$$
$$E(A_{i,j}|X_i, Z_i) = X_i\beta^{(j)} + Z_i\gamma^{(j)}, \quad \gamma^{(j)} \sim N(0, \Sigma_{\gamma^{(j)}})$$

K chosen using these three criteria:

- Look at amount of variance explained by the component (given by eigenvalue)
- Look at the whether any regression components are related to the scores
- See whether component is below "just noticeable difference" threshold

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Covariance and Components

Mean function and eigenfunctions for the first 3 components which account for 99.8% variance in the data, along with the estimated covariance function of the data.

 $\label{eq:FPC1} FPC1 \sim previous*tone*following + gender*condition + tone*condition + tone*syllable + vowel + word + speaker$

(Recall: $F0_{med} \sim \text{previous*tone*following} + \text{gender*condition} + \text{tone*condition} + \text{tone*syllable} + \text{vowel} + word + speaker)$

 $\mathsf{FPC2}\sim\mathsf{previous}*\mathsf{tone}*\mathsf{following}+\mathsf{previous}*\mathsf{voice}+\mathsf{tone}*\mathsf{intensity}+\mathsf{vowel}+\mathit{word}+\mathit{speaker}$

(ロ) (型) (E) (E) (E) (O)

Phonetics	MM 0000000	FPCA	Qiang	Mandarin	Summary
		Dia	and a state of the		

Diagnostics

Diagnostic QQ plots for the different functional principal component score linear mixed effect models.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Data and Fitted Values

F0 contour curves for the quadrisyllable of /ɕí tṣú 'piàn tsə/ ("riverbank"), with tonal pattern *HHLL* and as a declarative statement. The third syllable of the word is stressed. Also shown is the estimated functional response model curves for males and females.

・ロト ・個ト ・ヨト ・ヨト

æ

Phonetic Analysis of Pitch

Mixed Models Example: Median Analysis of Qiang

Functional Principal Component Analysis

Analysis of Qiang

Analysis of Mandarin

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Mandarin Data Characteristics

- COSPRO Data Set
- 5 Speakers
- 599 Paragraphs (mainly news items)
- Approx 70,000 individual syllables (curves)
- Designed to include all tonal combinations
- Complete recordings utilised not just frame words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Mandarin Covariance Function

Estimated covariance function for Mandarin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	00000000				

Mandarin Functional Principal Components

Estimated eigenfunctions for Mandarin.

Phonetics	MM 0000000	FPCA	Qiang	Mandarin	Summary
	Percer	ntage Vari	ance Explai	ned	

FPC $\#$	Individ.	Cummul.	
	Variation	Variation	
FPC1	88.23	88.23	
FPC2	9.78	98.01	
FPC3	1.42	99.43	
FPC4	0.32	99.75	
FPC5	0.11	99.86	
FPC6	0.05	99.91	
FPC7	0.03	99.94	
FPC8	0.02	99.96	
FPC9	0.01	99.97	
FPC10	0.01	99.98	
FPC11	0.01	99.99	
FPC12	0.01	99.99	

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

FPC Hz range

FPC#	Hz (99%)	Hz (95%)	FPC#	Hz (99%)	Hz (95%)
FPC1	133.3	101.3	FPC7	3.6	1.7
FPC2	55.3	38.3	FPC8	2.9	1.2
FPC3	35.8	20.7	FPC9	2.4	1.1
FPC4	19.1	9.1	FPC10	1.8	.85
FPC5	8.9	4.2	FPC11	1.7	.68
FPC6	5.7	2.5	FPC12	1.3	.45

・ロト ・個ト ・モト ・モト

э

Phonetics	MM 00000000	FPCA	Qiang	Man darin	Summary
	50				

Effects	Values	Meaning
Fixed effects		
previous tone	0:5	previous tone, 0 - no previous tone
current tone	1:5	tone
following tone	0:5	following tone, 0 - no following tone
previous consonant	0:3	0-voiceless, 1-voiced
next consonant	0:3	2-no const, 3-sil/short pause
B2	linear	Position of the B2 break
B3	linear	Position of the B3 break
B4	linear	Position of the B4 break
B5	linear	Position of the B5 break
Sex	0:1	1 for male, 0 for female
rhyme type	1:37	Rhyme of syllable
Random Effects		
Speaker	N(0, $\sigma^2_{speaker}$)	Speaker Effect
Sentence	$N(0,\sigma_{sentence}^{2})$	Sentence Effect

Phonet	ics MM 000	FPCA	Qiang	Mandarin	Summar
	Break Type	Meaning			
	Break 1	Normal syllable corresponds to perimental data value in the regr arately).	boundary. In one character unit, B1 is ec ressions and t	written Chinese, r. (As this is ou quivalent to the r hus not included	this r ex- nean sep-
	Break 2	Prosodic word b into a word, wh a lexical word.	oundary. Syl ich may or m	lables group toge ay not correspor	ether 1d to
	Break 3	Prosodic phrase an audible pause	boundary. Tł e.	his break is marke	ed by
	Break 4	Breath group bo	oundary. The	speaker inhales.	
	Break 5	Prosodic group graph.	ooundary. A c	complete speech i	para-

Table: COSPRO Break Annotation

Phonetics MM FPCA Qiang Mandarin Summary

Initial and Final Models

$$FPC_{X} = \{ [tn_{previous} * tn_{current} * tn_{next}] + [cn_{previous} * tn_{current} * cn_{next}] + [(B2) + (B2)^{2} + (B2)^{3} + (B3) + (B3)^{2} + (B3)^{3} + (B4) + (B4)^{2} + (B4)^{3} + (B5) + (B5)^{2} + (B5)^{3}] * Sex + [rhyme_{t}] \}\beta + \{ [Sentence] + [SpkrID] \}\gamma + \epsilon \}$$

- FPC1 2nd order tone and consonant interactions
- FPC2 3rd order interactions
- FPC3 2nd order tone, 3rd order consonant, no longer phrasal dependence
- FPC4 2nd order tone and consonant interactions, no complete phrasal dependence

Tones in Mandarin

Tone1 媽 "mother" Tone2 麻 "hemp" Tone3 馬 "horse" Tone4 罵 "scold" Tone5 嗎 question particle

Phonetics	MM	FPCA	Qiang	Mandarin	Summary
	0000000				

Mandarin Estimates

Estimates of specific utterances in Mandarin.

(日) (個) (E) (E) (E)

Time Tracked Estimates for Mandarin.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Presented a functional response model with can account for mixed effects in Phonetics

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Incorporates LME through the FPC scores
- Can be used to analyse pitch curve data
- Showed its application to Qiang and Mandarin