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It might seem somewhat implausible that func-
tional analysis, non-Euclidean geometry and 
statistical shape analysis have much to tell us 

about the spread of European languages. Histori-
cal linguistics has traditionally been something 
of a qualitative discipline, but recently there has 
been considerable interest in taking a more quan-
titative approach to the subject, through textual 
analysis but also through the analysis of acoustic 
recordings. It is this latter data that has allowed 
some more unusual links between mathematics 
and phonetics to be made.

Acoustic recordings yield considerable quantities 
of data which to all intents and purposes can be 
seen as continuous over time. For example, in Fig-
ure 1 below, a two dimensional surface (spectro-
gram) can be seen, where the fi rst axis represents 
time while the second represents the frequency of 
the sound wave being recorded. Th is spectrogram 
not only conveys all the time and frequency infor-
mation contained in the word being said, but can 
be treated (when suitably normalised) as a ran-
dom element, say X, X є L2.

Functional Data Analysis
Th e relatively new fi eld of functional data analy-
sis (FDA) (see [2], [4]) is something of a cross 
between functional analysis and classical statis-
tics. Unlike the usual univariate or multivariate 
analysis undertaken in most statistics, FDA is 
the branch of statistics that concerns data where 
the fundamental unit of that data is a function in 
some suitable (oft en infi nite dimensional Hilbert) 
space. Th e main idea is to use the properties of 
smoothness and regularity in the functions to 
allow statistical analysis to be carried out, even 
though the functions are only ever discretely ob-
served with noise.

One of the most important quantities in FDA is 
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Statistics in Non-Euclidean 
Spaces
However, covariance operators are not the usual 
type of data that statistical analysis is designed for. 
Th ey are non-negative defi nite trace class opera-
tors, so do not lie in a standard “Euclidean” space. 
Th e usual Euclidean metrics used in statistical 
analysis, extended to FDA, are not valid given 
the restricted space. Th is requires a new type of 
metric to be used, one with its roots in statisti-
cal shape analysis (see [1]), where non-Euclidean
geometry is commonplace.

Let us start by considering a closely related fi nite 
dimensional problem, defi ning a distance be-
tween two positive defi nite matrices. Possibly, the 
simplest approach to take would be to take the 
matrix logarithm and compute the usual Frobe-
nius norm between the matrix logarithms. Th is 
is indeed a Riemannian distance on the space of 
positive defi nite matrices, and as such allows sta-
tistical analysis to be developed. However, even if 
our covariance operators were positive defi nite, 
their trace class nature implies that their eigenval-
ues tend to zero, and hence the equivalent of the 
matrix logarithm is unbounded. However, this is 
not the case for all transformations. For example, 
the square-root transformation is well defi ned 
and the resulting operator, while not guaranteed 
to be trace-class, is still a Hilbert-Schmidt opera-
tor, and as such the distances are still well defi ned.

Th e square-root of a matrix, or operator, is, how-
ever, not uniquely defi ned. It would be somewhat 
more elegant if the distance between two lan-
guages was independent of the choice of square-
root. Th is is a well studied problem in statistical 
shape analysis, where the equivalent problem is 
that of how to match shapes that are subject to 
rotation and translation. Th e shape of dog is still a 
dog, whether it is standing with its head to the left  
or to the right. Equivalently the uniqueness of the 
square-root is defi ned up to its rotation, and as 
such by quotienting out the rotation group we ob-
tain a unique distance. Th ese ideas yield the fol-
lowing metric to measure the distances between 
our languages. For two covariances C1 and C2, the 
Procrustes metric is defi ned as

           

Figure 1  An example of a raw spectrogram (in logarith-
mic scale) as obtained by taking a windowed discrete fou-
rier transform of a 22kHz sound sample of a single syllable 
(the word one (“un”) in French). The fourier transform was 
computed every 10 ms to yield the discretised version of 

the function.

the covariance operator. For a random square 
integrable function X, with , the opera-
tor  is defi ned as the co-
variance operator, where   is the usual inner 
product in L2 (see [2] for more details). It is, by 
defi nition, non-negative defi nite, and in many 
data analysis situations is assumed to be a trace 
class operator, i.e.  where  are the 
eigenvalues of the spectral decomposition of the 
operator. In many situations, FDA proceeds by 
using one of the fundamental theorems of Sto-
chastic Processes, the Karhunen-Loeve decompo-
sition of the operator, to provide a basis for expan-
sion of the data. Th is allows a possible dimension 
reduction on the data to be performed, something 
that has been common in multivariate statistics 
since the early 20th century, in the fi nite dimen-
sional setting. However, in the case of examining 
diff erences between languages, it is the operator 
itself which will be of interest.

Assume that we are interested in understanding 
the relationship between languages through their 
acoustic properties. Given a set of recordings for 
a particular language, spectrograms can be pro-
duced and an estimate of the associated covari-
ance operators obtained. Languages, of course, 
have many characteristics, but it has been shown 
that one characteristic of interest is the variational 
patterns that are present in the sounds. Th ese dif-
ferences are captured exactly by the covariance 
operators. Th erefore by comparing covariance 
operators we can provide one particular compari-
son of the languages themselves. 
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guage) were generated from the sound samples, 
and preprocessed to form aligned functions from 
which covariances were formed. Th e distances be-
tween these covariances were then examined. 

It is possible to use the Procrustes metric to not 
only defi ne distances between covariances but 
also by extension to defi ne geodesics within the 
space of covariance functions (see [3]). Th ese can 
then be used to defi ne covariances for languages 
“between” any two of the observed languages or 
even to predict how one speaker might sound 
when speaking another language. Figure 2 shows 
one such predicted path. Here a speaker saying 
the word “un” (one in French) is mutated along 
a geodesic path into saying the word “um” (one 
in Portuguese). Th e speaker characteristics are 
retained but the variations attributed to the lan-
guages are captured via the geodesic path. Th ese 
spectrograms can then be transformed back into
audio to hear the results. Th is opens up a world 
of possibilities of discovering how one language 
might be related to another, or how historical lan-
guage groups might have evolved into modern 
day languages.

Th e integration of concepts from geometry, analy-
sis and other areas of mathematics into data anal-
ysis through statistics has a long history. However, 
modern data sources are constantly raising new 
challenges and areas such as non-Euclidean FDA 
are being developed for applications as diverse as 
brain imaging to those seen here in linguistics.
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where Li are such that , for i = 1, 2, and 
O{L2(Ω)} is the space of unitary operators on L2. 
Procrustes was the Greek innkeeper of myth who 
fi tted everyone to his iron bed by either stretching 
or chopping them to size, and as such this met-
ric equivalently gives a distance that disregards 
the orientations of the initial estimates of the co-
variance operator. Th is distance, although some-
what complex, has a simple closed form solution, 
where, for any choice of Li satisfying the above,

     
where σk are the singular values of the compact 
operator . It can be shown that, even when 
there are only fi nite amounts of discretised data 
present, the estimates of the distance converge as-
ymptotically.

Investigating the Relation-
ships in Romance Languages
Th e statistical analysis of non-Euclidean and func-
tional data are of interest in and of themselves, 
and are some of the fastest growing areas of mod-
ern statistics. However, this is in many ways be-
cause of their ability to be used to give insights 
into other areas such as historical linguistics. In 
a recent study, recordings of the pronunciation of 
the numbers one to ten were taken from four dif-
ferent romance languages (French, Italian, Span-
ish and Portuguese) with one language having 
two diff erent dialects present (Iberian Spanish 
and American Spanish). 219 spectrograms (there 
were several repetitions of each word in each lan-

Figure 2  Representation of the geodesic taking a speaker 
saying the French word "un" and turning it into the Portu-
guese word "um". The geodesic is based on the Procrustes 

metric in the space of covariance functions.
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