
Tutorial workshop on methods
for large-scale phonetic data
analysis

John Coleman
Margaret Renwick*
Ladan Baghai-RavaryLadan Baghai-Ravary

Phonetics Laboratory, University of Oxford

* now at University of Georgia

BAAP, Oxford, 7th April 2014

Schedule

• 9:30 John Coleman: Introduction – Why “big data”?

• 9:40 Ladan Baghai-Ravary: Forced Alignment and Speech
Recognition Systems

• 10:10 Margaret Renwick: Steps to Data Mining

• 10:40 Coffee Break (20 mins)• 10:40 Coffee Break (20 mins)

• 11:00 John Coleman and Margaret Renwick:
Numerical modelling and statistical methods

• 12:00 Lunch and registration

Aims

• To give you a flavour of what phonetics is like when
the amount of data gets big

• To pass on some lessons we've learned (the hard way) in
“big data” phonetics projects, especially work on the Audio BNC

• To inspire you to be ambitious, and boost your confidence• To inspire you to be ambitious, and boost your confidence

• To “up the game” of the discipline

Policy

• We assume little or no prior programming ability, but this is
not “programming for beginners”

• Intensive “fire-hose” method of teaching, so don’t expect to
understand every step

• If anything is completely baffling, you are welcome to interrupt
and ask a question, for clarification

• But: time is limited, so please keep questions on side-issues
for the breaks

Why is big N good?

•Variation in F2 frequency
of /ŋ/ (before /k/ or /g/)

vs. “from the” /m/

– Male, N = 79
– Female, N = 33

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F2 of /ŋ/

Male

FemaleP

– Male, N = 736
– Female, N = 328

0 500 1000 1500 2000 2500
0

F2 frequency (Hz)

0 500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

F2 of "from the" /m/

Male

Female

F2 frequency (Hz)

P

How big should N be?

where

z = level of confidence (you choose)

2

=
E

zs
n

z = level of confidence (you choose)
– for α = 0.95 (p < 0.05) → z = ±1.96
– for α = 0.99 (p < 0.01) → z = ±2.58

s = standard deviation in the population

E = maximum allowable error (you decide)

How big should N be?

Example 1: F2 frequency of /ŋ/ before /k/ or /g/; female speakers

for α = 0.99 (p < 0.01), z = ±2.58

s = 371 Hz

Say E = 10 Hz ?Say E = 10 Hz ?

n = (zs/E)2 = 9,162. But we only have N = 33!

Say E = 50 Hz ? (We used 100 Hz bins) n = 367 !
Say E = 100 Hz and z = ±1.96 ? n = 53 ! Still not enough

How big should N be?

Example 2: F2 frequency of /m/ in “from the”, male speakers

for α = 0.99 (p < 0.01) → z = ±2.58

s = 250 Hz

Say E = 50 Hz ?Say E = 50 Hz ?

n = (zs/E)2 = 167. We have N = 736 tokens, so we are OK

We could even be more picky about our measurement accuracy:

E = 25 Hz ? n = 666

What's the point?

• Typical experiment: N = 1000 data points

• Add 1 second of work per data point
(measurement, analysis, data management, scratching
your head, gazing out of the window ...)

• 1000 s = 17 minutes• 1000 s = 17 minutes

What's the point?

• Now scale up to N = 1 million data points

• Add 1 second

• 1,000,000 s = 16,667 minutes
= 278 hours
= 11½ days (24 hours), or 35 8-hour days= 11½ days (24 hours), or 35 8-hour days

• Similarly, save 35 days of drudge work by trimming 1 s
from your work on each data point

• Even if you only have N = 10,000 data points,
10,000 extra seconds = 2 hours 47 minutes

How to save 1 million seconds

• Principle of time management courses:
make time by saving seconds

• Put your computer to work: learn to tell it what to do

• Avoid the graphical user interface if possible: they require you
to work the mouse etc.

• 1 million extra keystrokes → slippery slope to RSI

• Not necessarily programming, but some command-line
interactions or scripts save a lot of time

The memory stick

• 32 GB – cost us (well, cost ESRC) £18.40 each
• Contains 28 GB of data from the Audio BNC
• A valuable asset for you and for your institution
• Given on your agreement that you will not just wipe it
• 4 GB Free Space folder for your own use

• You can make copies on your own/department's computer(s)• You can make copies on your own/department's computer(s)
but refer to Audio_BNC_READ_ME_FIRST.html for terms

• Please visit http://www.phon.ox.ac.uk/AudioBNC and register

What's on the memory stick?

• html folder - all 911 Spoken BNC texts transcribed
• TextGrids folder - 408 Praat TextGrids, relating to …
• wavs folder - 346 selected .wav files

• Audio_BNC_READ_ME_FIRST.html - overview, T's & C's
• BNC_dict.txt - 219,000 word variants transcriptions
• BNCindex.html - list of the full Audio BNC contents• BNCindex.html - list of the full Audio BNC contents
• BNC_licence.pdf
• BNC_transcription_alphabet.html – ASCII codes ↔ IPA
• PraatSearch.html - how to search for words in the audio
• thephonebook.txt - 3.98 million segments in this sampler
• wordtriplets.txt - 1.13 million words-in-context

• In short, a goldmine of speech, so please don't delete it

Other ways of getting BNC audio etc

• (Most of) the Audio BNC is freely available from
http://www.phon.ox.ac.uk/AudioBNC

but it would take an awfully long time to download it

http://bncweb.lancs.ac.uk/ has a search tool that retrieves
audio extracts of conversations from our site; you can stream them,
listen to them, save them, or link to them. Registration needed.listen to them, save them, or link to them. Registration needed.

To find and obtain smaller portions (e.g. words), you'll need to learn
how to “mine” the files we have provided ...

or how to use time-interval references to download specific audio
segments from the AudioBNC site.

Typical “big data” workflow
• Design your research question; frame hypothesis H
� Figure out what words or phrases you need to address H

– we shall not be addressing these 2 steps

• Find where in the corpus those items are (and how many there are)

– “Forced alignment”, the killer app for finding material in large– “Forced alignment”, the killer app for finding material in large
corpora, is essential here. [Ladan]

Typical “big data” workflow
• “Mine” the corpus, to find and obtain/locate/extract the portions you

want to analyse

• Assess the quality of the portions. Are they the correct bits?

• Throw out the rubbish. Have you still got enough?
[Peggy][Peggy]

Typical “big data” workflow

• Extract relevant acoustic parameters (using commands, not GUI)

• Check the quality of the extracted parameters

• Model the parameters (numerically) e.g. Functional Data Analysis

• Analyse the model parameters, using statistical methods

[Peggy and John]

Forced alignment and speech recognition

• Ladan

STEPS TO DATA MINING
Peggy Renwick

Steps to data mining

✔ Alignments (Praat TextGrids)

What can the data tell us?

…What data do we have?

Searching TextGrids

Search the output of the aligner to find

(a) What’s in the recordings?

(b) How many tokens are there?

(c) When are these tokens in the audio?

Benefits of an index

Compilation of all TextGrids in one file

One segment or word (pair, triple) per line

Contains:
Word(s), start time, end time, filename (or URI)Word(s), start time, end time, filename (or URI)

� Provides direct access to audio information
specific to those words

Master indexes

Permit corpus-wide search

Include start & end times for words or segments

Example: Entries in “thephonebook.txt”

Indexing data

Example: Entries in “thephonebook.txt”

23

Search the index for words, sounds, etc.

Total word pairs in the Audio BNC: 3,759,845

Total phone count for the Audio BNC: 20,146,977

(count includes silences)

Finding data

Example:
“Oxford University” appears six times in the Audio BNC.

24

“Only six times?!”

Natural language is unbalanced:
linguistic units are not equally
distributed.

Relative frequency in a corpus

Zipf’s Law

Some structures are intensely
more common than others

A sufficiently large sample reflects
relative frequencies in a language

25

Relative frequency and the Audio BNC

I Top 10 words
You each occur
it >58,000 times
the
's
and

26

and
n't
a 12,400 words
That (23%) only
Yeah occur once

For the 1st
token, listen for

[ʒ], the least frequent English phoneme
(i.e. to get all English phonemes)

13 minutes

“twice” (1000th most frequent word in
the Audio BNC)

14 minutes

“from the” (the most frequent word-pair 17 minutes

Just listening and waiting, how long
till items show up?

“from the” (the most frequent word-pair
in our nasals study)

17 minutes

“railways” (10,000th most frequent word) 26 hours

“getting paid” (the least frequent word-
pair occurring >10 times in our study)

95 hours
(4 days)

For the 1st
token, listen for

For 10 tokens,
listen for

[ʒ], the least frequent English phoneme
(i.e. to get all English phonemes)

13 minutes 5 hours

“twice” (1000th most frequent word in
the Audio BNC)

14 minutes 44 hours

“from the” (the most frequent word-pair 17 minutes 22 hours

Just listening and waiting, how long
till items show up?

“from the” (the most frequent word-pair
in our nasals study)

17 minutes 22 hours

“railways” (10,000th most frequent word) 26 hours 41 days
without sleep

“getting paid” (the least frequent word-
pair occurring >10 times in our study)

95 hours
(4 days)

37 days

Example: Searching an index
Step 1: Find a techno-buddy, if needed

Step 2: Open a Terminal/shell window
OS X: F4 � type Terminal

cd to your workshop directory, e.g.
cd /Users/peggy/workshopcd /Users/peggy/workshop

cp /Volumes\USB DISK/thephonebook.txt .

Type ls (and hit Return) to see directory contents

View a file’s beginning:
head thephonebook.txt
head -20 thephonebook.txt

Searching for phones

Search for all instances of “M”:
grep \"M \" thephonebook.txt

Look at only the first few:
grep \ "M\ " thephonebook.txt | headgrep \ "M\ " thephonebook.txt | head

How many are there?
grep \"M \" thephonebook.txt | wc -l

Comparing phone counts

Search for several phones simultaneously:
grep \"[LMNP] \" thephonebook.txt |

awk '{ print $1 }' |

sort |

uniq -c |

sort -nr

Relative frequencies of phones

$ grep \"[LMNP]\" thephonebook.txt | awk '{
print $1 }' | sort | uniq -c | sort -nr

256177 "N"

125880 "L"

110016 "M"

62614 "P"

N is four times more frequent than P.

Can we have a balanced data sample?

Not with spontaneous speech!

Occurrence of homorganic [mp]
limited by frequency of [p]

Automatic alignment in linguistic research

Automatic alignment is essential

- Much faster than human aligners
- Assigns boundaries even in poor audio signals

…but the alignments are not perfect …but the alignments are not perfect

- Noise & disfluencies cause alignment errors
- Transcription–audio mismatches throw off alignments
- Poor signal quality makes alignment difficult

Noise in big data

The Big Data ideal:
Some statistical “noise” from outliers
…but a surfeit of data prevents skewed results

The phonetic reality:The phonetic reality:
- Subtle phonetic differences are disturbed by bad tokens
- Additional high variation across individual speakers

� Filtering out bad data is essential

Human quality control

Listen to all tokens of interest
- “Do I hear the words I expect?”
- Eliminate all misaligned tokens

…or search the corpus by hand for more tokens

Accuracy rates
- Word Joins: approx. 67% pairs well-aligned
- BAAP memory stick: higher aligner accuracy

Big Data tactics for quality control

How do we save seconds of listening?

Use a script:

- Input: List of locations in TextGrids

- Plays the audio

- Do you hear what you want to hear?

- If you do, the script extracts the audio to a .wav file

- Generates a list of which tokens are well-aligned (or not)

Searching & listening
Generate the input:

grep "\"LADIES\" \"AND\" \"GENTLEMEN\""
wordtriplets.txt > ladies_gentlemen.txt

Run the listening script:

/Volumes/USB\
DISK/AudioBNC_sample_for_BAAP/check_wordpair_BAAP.p y
ladies_gentlemen.txt .1

Type y if you hear “ladies and gentlemen”, n if you don’t

Move the results to a subfolder:

mkdir LADIES_AND_GENTLEMEN
mv LADIES*.wav LADIES_AND_GENTLEMEN

Scripted workflows

awk: text-based data wrangling

sox : command-line audio processing

wget : downloads content from a web URL

Praat : scriptable software for phonetic analysis Praat : scriptable software for phonetic analysis

esps : command-line phonetic analysis

R: complex data transformations, scripted plotting
(also statistical analysis)

…and many more!

Example: a Praat script

Open Praat
Praat � Open Praat script…

Select extract -f0 -BAAP.praat � Open
- Reads in your .wav files - Reads in your .wav files
- Creates a pitch object for each
- Gets f0 measurements every 10 ms
- Writes the results to a .csv file

Get directory: in Terminal, cd to the LADIES_AND_GENTLEMENdirectory.
Type pwd and paste the result into Praat’s Directory window.

Running the Praat script

Get directory: in Terminal, cd to the
LADIES_AND_GENTLEMENdirectory.
Type pwd and copy the result.

In Praat script: Run � Run

location: /Users/mrenwick/workshop/LADIES_AND_GENTLEMEN/

paste in your working directory

output: /Users/mrenwick/workshop/ladies_f0.csv

Data mining for phonetics

Automated analysis saves time at every step

Using simple tools & scripts

- Saves valuable seconds, minutes, hours
- Boosts reproducibility - Boosts reproducibility
- Allows us to analyze more data!
- is fun!

Coffee Break

Back at 11:00

Analyzing f0 in “FIFTEEN”

Search for tokens & look at output

In your workshop directory:
grep "^\"FIFTEEN\"" wordtriplets.txt |

head

grep "^\"FIFTEEN\"" wordtriplets.txt |

wc -l

Analyzing f0 in “FIFTEEN”
There are 172 tokens of the word “FIFTEEN” on the memory stick

grep "^\"FIFTEEN\"" wordtriplets.txt | tr '_' ' ' |
awk '{print "play " $4 ".wav", "trim " $8, $9-$8}'
>play15

chmod +x play15

./play15

Scripted workflows

Trim and save the audio clips rather than playing them

cat play15 |
awk '{print "sox",$2,"Fifteen/FIFTEEN" NR ".wav",$3,$4,$5}'
>trim15

wget

Search for tokens, write to file for wget

grep "^\"FIFTEEN\"" wordtriplets.txt |

tr '_' ' ' |

awk '{print "http://bnc.phon.ox.ac.uk/data/" awk '{print "http://bnc.phon.ox.ac.uk/data/"

$4 ".wav?t="$8","$9 }' > wgetlist

Download Audio BNC clips

Make directory for wget output:
mkdir FIFTEEN_wavs

Run wget: Run wget:
wget -i wgetlist --directory-prefix=FIFTEEN_wavs/

Rename files

cd FIFTEEN_wavs

Make a renaming script:

ls | awk ’{print "sox", "FIFTEEN_wavs/"$0,
"FIFTEEN_clips/FIFTEEN"NR".wav"}' > ../rename_wavs

cd ../

mkdir FIFTEEN_clips

Make script executable: chmod +x rename_wavs

Run script: ./rename_wavs

Coffee Break

Back at 11:00

Welcome back!

If you didn’t manage to keep up so far, the “good” versions of
“FIFTEEN” are in the Good.zip download.

Data modelling

• Case study 1: intonation of FIFTEEN

• Anti-TOBI: modelling the whole contour

• Fitting a function to a contour

• so you can analyse the parameters of the fitted function• so you can analyse the parameters of the fitted function

• Case study 2: fitting a probability density function to characterise
the mean and standard deviation of F2 frequency in /m/

Extracting f0
Open Praat

Praat � Open Praat script…

Select extract-f0-BAAP.praat � Open

In Praat script: Run � Run In Praat script: Run � Run

location: /Users/mrenwick/workshop/FIFTEEN_clips/

output: /Users/mrenwick/workshop/fifteen_f0.csv

Filter bad data

Run filtering scripts:
for i in `awk -F, -v threshold=3 -f data-filter.awk <

fifteen_f0.csv | awk '{ print $3 }'`;

> do grep $i, fifteen_f0.csv; done |

> awk -F, '{ if ($2!="--undefined--") print $0 }' >
fifteen_f0_filtered.csv

Intonation of FIFTEEN

• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Intonation of FIFTEEN

• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Right mouse
“Save Data As ...”

to save f0 measurements
to a text fileto a text file

Intonation of FIFTEEN

• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Right mouse
“Save Data As ...”

to save f0 measurements
to a text fileto a text file

But what if you have
thousands of files?

Intonation of FIFTEEN

• wavesurfer uses the ESPS get_f0 command to obtain f0 time-series
• syntax: get_f0 [options] input_file output_file

ESPS is a package of UNIX-like commands and programming
libraries for speech signal processing.

You can download a recent .deb package for ESPS from
http://www.phon.ox.ac.uk/releases

David Talkin's paper on get_f0 is here:
http://www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf

Intonation of FIFTEEN

• Using wavesurfer, ESPS get_f0 to obtain f0 time-series
• syntax: get_f0 [options] input_file output_file

for i in *.wav
> do get_f0 $i $i.f0
> pplain $i.f0 >$i.f0.csv
> done> done

On one line, that’s:

for i in *.wav; do get_f0 $i $i.f0; pplain $i.f0 >$i.f0.csv; done

• These .csv files are simple ASCII
text files like this: ------------�

• The first column is f0, the second
is voicing; ignore the other two

0 0 0 0.272821
0 0 34.4253 0.551759
0 0 44.9999 0.641592
0 0 242.326 0.515299
176.894 1 401.017 0.553706
174.434 1 399.113 0.931412
167.352 1 378.998 0.951326
162.623 1 358.704 0.927735
160.734 1 356.843 0.931884
154.345 1 250.132 0.617554
170.107 1 159.65 0.843205
0 0 82.2662 0.494668
0 0 92.7429 0.730789 0 0 92.7429 0.730789
0 0 110.42 0.433576
0 0 71.1711 0.53332
0 0 59.6541 0.419894
0 0 62.9074 0.538716
0 0 53.2908 0.319767
0 0 47.034 0.288603
0 0 38.5281 0.346631
0 0 47.2128 0.452121
0 0 50.4091 0.43822
0 0 44.2441 0.568226
--More--(28%)

Intonation of FIFTEEN3

• You can open a .csv file in a spreadsheet programme, and plot
the data (see, you don't have to have Praat or wavesurfer to
draw speech parameters)

140

160

180

200

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

Intonation of FIFTEEN165

• You can open a .csv file in a spreadsheet programme, and plot
the data (see, you don't have to have Praat or wavesurfer to
draw speech parameters)

250

300

0

50

100

150

200

1 5 9 13 17 21 25 29 33 37 41 45 49

140

160

180

200

How you could analyse intonation ...

• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

140

160

180

200

How you could analyse intonation ...

• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

H* L

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

time of H* time of L

140

160

180

200

How you could analyse intonation ...

• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

H* L But there are 44 f0
measurements in this

contour. Should we throw
42 of them away?

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

time of H* time of L

The peak and trough
give 2 f0 measurements

140

160

180

200

Intonation of FIFTEEN3

• With the discontinuity (voiceless portion) excised:

The slope of this portion is
interesting, but should it

be based on just 2 points?

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Intonation of FIFTEEN3

• Cf. a linear regression line; it may not look quite so good,
but it's actually a better fit (to the whole line)

140

160

180

200

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Intonation of FIFTEEN3

• A logarithmic regression curve fits better

y = -40.0ln(x) + 209.0150

200

250

Could we discover anything
from the details of this

equation?

y = -40.0ln(x) + 209.0
R² = 0.846

0

50

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Why single-point measurements of
sampled data are not great

• What is the true minimum of this curve? - 9968 or -9969?

0

5000

10000

15000

0 5 10 15 20 25 30 35 40

-15000

-10000

-5000

0

-9968 or -9969 ?

-9200

-9000

-8800

-8600

-8400

-8200

15 16 17 18 19 20 21 22 23

Why single-point measurements of
sampled data are not great

What is the true minimum of this curve? - 9968 or -9969?

-10200

-10000

-9800

-9600

-9400

-9200

-9968 or -9969 ?
Answer: neither.
The true value is -10000; it
is a cosine function x10000

Functional Data Analysis

• Modelling sampled data using (continuous) functions

• General approach:

– Possibly smooth the data a bit, to iron out irrelevant wiggles
– Possibly normalize the data
– Registration: some sort of time alignment of the individual– Registration: some sort of time alignment of the individual
tokens (not always necessary)

Functional Data Analysis

Choose a general kind of (basis) function that looks like your data

• For periodic data: Fourier series
• For nonperiodic data: B-splines

sometimes: Orthogonal Polynomials (Example 1)
• others are possible

• Probability density functions
• E.g., for normally-distributed data: Gaussians (Example 2)

Fit the function to the data
i.e. find the parameters of the function that minimizes the
differences between the function and the data

Orthogonal polynomials in Octave/Matlab

• Put numeric data into Matlab's vector notation:

• Normalize it:

y =
[176.894;
174.434;
167.352;
162.623;
160.734;
...
88.6733];

yn = y/mean(y) - 1;

f0 = load('FIFTEEN3.wav.f0.csv');
y = f0(:,1);
y = y(y>0);

• Normalize it:

• Normalize the time dimension to the interval [-1 1], and turn it
into a column vector:

yn = y/mean(y) - 1;

x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);
x = x';

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

[a,S] = polyfit(x,yn,3);

•The fitted function is given by
and restored to the original units (e.g. Hz)

fit = getfield(S,'yf');

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

ysynth = mean(y)*(fit+1);

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

[a,S] = polyfit(x,yn,3);

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

slope
(steepness
anddirection)

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

breadth of
curvature

slope
(steepness
anddirection)

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

•The fitted function is given by
and can be restored to the original units (e.g. Hz) by

fit = getfield(S,'yf');

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

ysynth = mean(y)*(fit+1);

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Steep and
downwards

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

downwards

Wide and concave

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Wide and concave

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Not very
much!

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

A bit more
sinuous

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Narrower and
convex

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Gently
upwards

Red: cubic
Green: quartic

Adding more terms

a = -0.279631 -0.139361 0.185936 -0.19866
a = 0.019243 -0.281304 -0.155766 0.18665 0.050168

amount of

∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Orthogonalisation

� Translate polynomial coeffients into
orthogonal (Legendre) polynomial coeffs:

c = [0.4*a(1) 2*a(2)/3 a(3)+6*a(1)/5 a(4)]

%% a = 0.19321 0.63340 -0.70280 -0.19866
%% c = 0.077284 0.422269 -0.470948 -0.198659

Loop over all the “good” files
for i = 2:172

eval(['fid = fopen(''FIFTEEN',int2str(i),'.wav.f0.c sv'');']);

if (fid ~= -1) %% checks file FIFTEEN i ... exists

eval(['f0 = load(''FIFTEEN',int2str(i),'.wav.f0.csv '');']);

y = f0(:,1);

y = y(y>0);

yn = y/mean(y)-1;

x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);

x = x';

[a,S] = polyfit(x,yn,3);

c = [0.4*a(1) 2*a(2)/3 a(3)+6*a(1)/5 a(4)];

C(i,:) = [i c];

end

end

save('coeffs.csv','C');

Functional data analysis in R

z-score -f0 -poly -BAAP.R

- Performs z-score transformation of f0 data
- Fits 2nd-order polynomial to each file

- Intercept- Intercept
- Linear (slope) term
- Quadratic term
- Adjusted R2 for curve fit

Script output: fit2.coeff.f0 object & .csv file

Now do your statistics
• Rather than applying statistical tests to the raw data,
examine the means, variances etc of the coefficients of the
functions you're using to model the data

coeffs.csv
0 0 0 0 0

2 0.094591528 -0.090229162 -0.022355083 0.0477172

3 0.07728441 0.422268933 -0.470948363 -0.19865862

0 0 0 0 0

5 -0.237378144 -0.065854502 -0.027159549 0.029072195

0 0 0 0 0

7 -0.034872629 -0.072306628 -0.152050826 0.041887784

0 0 0 0 0

Slope

9 -0.002626976 -0.181630596 -0.238291819 0.103118291

0 0 0 0 0

11 0.023445549 0.020728149 -0.119549338 -0.00534581

0 0 0 0 0

13 -0.303372913 0.364972835 -0.373086886 -0.172771143

0 0 0 0 0

0 0 0 0 0

16 -0.01144175 -0.002436757 -0.05645396 0.003428771

17 0.110621474 0.167832411 0.289525511 -0.097446139

18 0.184731822 0.707875524 -1.074013742 -0.283804173

coeffs.csv

Slope
(c3)

0

0.5

1 3 5 7 9 11131517192123252729313335373941434547495153555759616365676971737577

Positive
(fif’TEEN)

Negative
(‘FIFteen)

-2

-1.5

-1

-0.5

Example 2
• Fitting a probability density functions to histograms

male /m/

Example 2
• Fitting a probability density functions to histograms

male /m/

In Matlab (or Octave):
f = [300 400 500 600 700 800 900 1000 ... 2200]';
m_hist = [0 0 0 2 1 8 14 60 68 71 54 32 28 14 6 3 2 1 0 0]';
mu_m = sum(m_hist .* f)/sum(m_hist);
sigma_m = sqrt(sum(m_hist .* ((f - mu_m).^2))/(sum(m_hist)-1));

Example 2
• Fitting a probability density functions to histograms

model /m/

In Matlab (or Octave):

X_m = [normpdf(f,mu_m,sigma_m)];
a_m = X_m\m_hist;
model_m = a_m*normpdf(f,mu_m,sigma_m);

Conclusions
• We need bigger datasets because of (a) Zipf's law and
(b) variability in the population

• To scale up for big data, every second saved is a bonus

• To be feasible, automate the analyses as much as possible

• Forced alignment is a “killer app” for finding items in corpora

• Human listening is good for checking whether the automatic
selection of data is basically sound

Conclusions
• Otherwise, minimize human processing; learn to script

• Avoid manual selection of segments and painstaking
of single points in the data

• Try to analyse properties of the whole curve

• Fit functions to the data, and then do your stats on the
coefficients of the fitted functions

