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Abstract 
In a corpus containing speech data from seven dialects  of 
English, we hand-labelled over 700 nuclear accents and 
identified seven accent types. Then we used four-term 
mathematical models to describe the fundamental frequency 
patterns associated with the accents. A statistical analysis 
showed that the models for six of the seven accents differed 
significantly from each other. Our hand-labels were 
associated with consistently different f0 patterns. 

1. Introduction 
Mathematical models of intonation used in speech technology 
are often inaccessible to linguists. By the same token, 
phonological descriptions of intonation are rarely used by 
speech technologists, as they cannot be implemented in 
software. In this paper, we explore bridges between 
intonational phonology and speech technology. Phonologists 
need methods that allow for empirical validation of labelling 
systems and access to larger bodies of data. Speech 
technologists require empirically tested and directly 
implementable models filtered by linguistic insights.  

A first step in this direction was taken by Andruski and 
Costello [1]. Andruski and Costello used coefficients from 
polynomial equations to explore small differences in the f0 
contours of three low falling tones in Green Mong. 
Polynomial equations are a common mathematical approach 
to the description of curves; they produce a hierarchy of 
descriptions of increasing complexity and accuracy.  
Mathematically, they are expressions involving a sum of 
powers in one or more variables multiplied by constants (e.g. 
a2x2 +  a1x  +  a0). In work on intonation in speech 
technology, polynomial equations constitute one of several 
standard approaches to curve-fitting. Other well-known 
curve-fitting models of intonation are described in Fujisaki 
[2], Hirst, di Christo and Espesser [3] and Taylor [4]. 

In their investigation of Green Mong, Andruski and 
Costello [1] used polynomial equations to test whether f0 
contour shape alone could distinguish the three falling tones. 
They estimated linear and quadratic equations for each pitch 
contour (y = a + bx and quadratic y = a + bx + cx2, 
respectively). The resulting coefficients (a, b, c) provided a 
quantitative description of the slope and the curvature of the 
three tones. Subsequent analyses revealed that the three tones 
could indeed be discriminated well above chance level on the 
basis of contour shape.  

In the present paper, we use polynomial equations to 
describe the rich inventory of nuclear accents found in 
English spoken in the British Isles [5]. We show how 
autosegmental-metrical accent labels can be mapped onto 
relatively simple polynomial models to provide quantitative, 
statistically testable descriptions of each accent type.  

2. Method 
Our research was based on 714 read sentences in the IViE 
corpus [5, 6]. These were produced by three male and three 
female speakers from each of seven dialects of English 
spoken in London, Cambridge, Leeds, Bradford, Newcastle, 
Belfast, and Dublin. The London speakers were of West 
Indian descent and the speakers from Bradford were English-
Punjabi bilinguals. The sentences consisted of fully voiced 
declaratives, wh-questions, polar questions and declarative 
questions, read in isolation. They are listed on our web-site 
[6] and in [7].  
 

2.1.  Autosegmental-metrical intonation labels 

We assigned autosegmental-metrical intonation labels to the 
714 sentences via a combination of auditory analysis and 
visual inspection of fundamental frequency traces, a standard 
approach in the field [8, 9]. We used the IViE system, an 
autosegmental-metrical intonation transcription system 
developed for labelling of dialectal intonational variation in 
English [5, 10]. Transcriptions were made using the 
ESPS/xwaves+ package developed by Entropic Research 
Laboratories. A completed transcription consisted of an audio 
file, a time-aligned fundamental frequency trace and time-
aligned text files containing transcriptions of intonation 
patterns. The labeling procedure is described in [5].  

Seven nuclear accent types were labelled in more than 
five instances and were included in the present study: H*  H% 
(high rise), H*L  % (fall), H*L  H% (fall-rise),  L*H  L% 
(rise-(plateau)-fall), L*H  H% (rise), L*H  % (rise-plateau) 
and L*  H% (late rise). (The ‘%’ boundary symbol indicates 
that the f0 level associated with the last tone of the last accent 
in the intonation phrase is continued up to the boundary.) The 
number of tokens of each nuclear accent type in the data set is 
shown in Table 1.  

 

Table 1: Distribution of nuclear accents in the 
sentence data in the IViE corpus. 

Nuclear accents Tokens 
H*L  % fall 414 
L*H  % rise-plateau 187 
H*L  H% fall-rise 41 
L*H  H% rise 32 
H*  H% high rise 15 
L*  H% late rise 12 
L*H  L% rise-plateau-fall 9 

 710 



Table 1 shows that the frequency distribution of nuclear 
accent types was uneven, as one would expect in a large 
speech corpus (‘lopsided sparsity’, van Santen [11]). In the 
present study, we handle data sparsity via Multivariate 
Analyses of Variance (MANOVA), a statistical technique 
developed to process uneven amounts of data. 

2.2.  Mathematical modelling 

A detailed description of our approach to polynomial 
modelling, including instructions for how to carry out 
modelling in MS Excel, is given in [12]. Our analysis was 
carried out with a set of custom-written Python scripts. A 
brief description follows.  

We used Legendre polynomials. These are orthogonal, 
consequently, there are no correlations among the coefficients 
that describe the shape of an intonation pattern. Each nuclear 
accent was modelled separately. The analysed region of f0 
began 100 milliseconds before the nuclear accent of the 
sentence (as defined by the final accent label preceding a 
boundary), and extended to the end of the voiced part of the 
sentence. The central step in the analysis was to represent the 
data as a best-fit sum of Legendre polynomials where each 
polynomial is normalised to have unit variance. The result of 
the analysis was a model for the f0 contour of each accent. 
The model was specified by a set of coefficients, ci, that 
multiply the different Legendre polynomials (Li) before they 
are added together: 
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Next, a set of coefficients was found that gave the best fit 
of Equation 1 to the data. To find these, we used a weighted 
linear maximum-likelihood regression, exactly as in [13]. We 
limited our models to four coefficients. These described the 
average and the slope of each f0 contour in the data, and two 
kinds of curvature: a parabola shape and a wave shape. 

3. Results 
We carried out an Analysis of Variance to test whether the 
polynomial models associated with each of the seven accents 
were statistically different. (Note that all results given in this 
section apply to the data set as a whole, not on a per-dialect 
basis. The size of the differences is discussed in section 4). 

The dependent variables were AVERAGE (c0), SLOPE 
(c1), PARABOLA (c2) and WAVE (c3). LABEL (i.e. nuclear 
accent type) was the independent variable (Table 1). The 
analysis produced very highly significant main effects of 
LABEL on the dependent variables (AVERAGE F[1, 6]  
= 54.0, p < 0.001, SLOPE F[1, 6] = 78.6, p < 0.001, 
PARABOLA F[1,  6] = 14.4, p < 0.001, WAVE F[1,  
6] = 15.2, p < 0.001).  

Post-hoc Tukey tests showed that 17 of the 21 accent 
pairs differend significantly at p < 0.001, in one or more 
coefficients.  A further two pairs differed at at p < 0.05. We 
did not find significant differences between L*  H% (a late 
rise observed in data from London) and the other two low 
rising accents L*H  % (the rise plateau, common in Belfast 
English) and L*H  H% (the rise, observed in all dialects).  

Finally, the statistical analysis showed that a model based 
on three coefficients would also have been successful in 
distinguishing between the nuclear accent contours in our 
corpus. We found significant differences between contours in 
the fourth coefficient, but the information was redundant.  

Figure 1 shows mean coefficient values for each nuclear 
accent type (but recall that accents were modeled 
individually).   
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Figure 1: Four-coefficient f0 profiles for seven nuclear 

accents in the IViE corpus. The coefficients are listed on the 
x-axis. The y-axis shows units of normalised f0 (0.1 = 10% of 

the speaker’s average f0). 

 
In Figure 1, a negative coefficient c0 is equivalent to a low 
average f0 for the accent type; a positive coefficient c0 shows 
the opposite. A negative coefficient c1  shows that the accent 
has falling slope, a positive c1 represents a rising slope. A 
negative coefficient c2 models a cup-shape, a positive c2 
describes a domed shape. A negative coefficient c3, shown for 
completeness, describes a falling-rising-falling component of 
the shape and a positive c3 describes a rising-falling-rising 
component. 

We will now describe two of the profiles shown in Figure 
1, by way of example: Figure 1a shows the four-coefficient 
representation of H*  H%, the high rise. The first coefficient 
was positive and large: H* H% accents had a relatively high 
average. The second coefficient was also positive and large: 
H*  H% accents had rising slopes. The third coefficient was 
small but positive: the pattern was somewhat cup-shaped. The 
fourth coefficient was close to zero, indicating that the 
WAVE component contributed little to the shape. 

(a)    H*  H% (b)    H*L  % 

(c)    H*L  H% (d)    L*H L% 

(e)    L*H  H% (f)     L*H  % 

(g)    L*  H% 

c0  c1  c2  c3  c0  c1  c2  c3  

c0  c1  c2  c3  c0  c1  c2  c3  

c0  c1  c2  c3  c0  c2  c2  c3  

c0  c1  c2  c3  



Figure 1e shows L*H  H%, a rise from a low accented 
syllable. The first coefficient, the average, was much lower 
than for H*  H%; the accent began significantly lower in the 
speakers’ f0 ranges. The second coefficient was large, as 
expected for a rising slope. The small but positive third 
coefficient shows that L*H  H% accents were also somewhat 
cup-shaped. Again, the average of the fourth coefficient was 
about zero. 

To illustrate further the plausibility of the orthogonal 
polynomial descriptions, in Figure 2 we show an f0 model for 
each accent shape, reconstructed from the four coefficients in 
Figure 1.  
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Figure 2: Reconstruction of f0 models from the four 
coefficients (thick black lines) with superimposed f0 
data (unfilled circles). The x-axis shows normalised 

time (-1 = beginning of utterance; +1 = end of 
utterance). The y-axis shows normalised f0. 

 
In Figure 2, the reconstructed f0 models (thick black lines) 
summarise the salient characteristics of each accent type. The 
reconstruction was done by entering the relevant set of 
coefficients into Equation 1 and computing M(x) for 100 
different values of x between –1 and 1. For comparison, we 
have superimposed one original, normalised f0 trace from the 
IViE corpus (unfilled circles) in each panel. This 
superimposed trace has the least mean-square difference from 
the model. The traces show that the polynomial models – 
despite being an average – are representative of the data.  

4. Discussion 
The models in Figures 1 and 2 provide a quantitative link 
between autosegmental-metrical intonation labels and 
statistical characteristics of classified accents. The figure 
shows that each label is associated with a different contour. 
With the exception of L*  H%, the late rise, all contours are 
statistically different.  

The f0 traces labelled as L* H% could not be 
distinguished significantly from those labelled as L*H  H% or 
those labelled as L*H  %. One might conclude that L*  H% is 
not a separate accent type and the label should be collapsed 
with another label describing a rise. The conclusion is not, 
however, straightforward: firstly, the results of the statistical 
analysis do not show which accent L*  H% should be 
collapsed with, L*H  H% or L*H H%. Secondly, since we 
worked with very few tokens of L*  H%, we cannot entirely 
dismiss the issue of data sparsity (cf. Table 1). MANOVA 
looks for statistical differences between the means of the 
distributions of coefficients associated with different labels. 
Given more data, the approach becomes more sensitive: 
means become more precisely defined as more measurements 
are made. Had we worked with a larger number of L*  H% 
accents, a significant difference might have emerged. This 
argument points out a limitation of a purely statistical 
analysis: any difference between the coefficients of two 
labels, however small, could be statistically significant if one 
had a large enough corpus. Statistical significance is only 
meaningful if coupled with an estimate of the size of the 
effect. In our data, in addition to being statistically significant, 
some of the differences are quite large and should be 
perceptually obvious. H*L  % and H*L  H%, for instance, are 
not the most different pair but differ by 0.2 normalised f0 units 
at the end of the utterance.  For a speaker with a 170 Hz mean 
f0, this would be a difference of 34 Hz, substantially larger 
than segmental perturbations and the psychophysical just-
noticeable-difference.  

Finally, in our examination of the result for the late rise 
L*  H%, we need to consider the effect of neutralisation. The 
shape of a nuclear f0 contour is affected by the structure and 
number of syllables available. In British English, distinctions 
between L*H  H%, L*H  % and L*  H% can be observed only 
if the accented syllable is followed by at least one syllable; 
otherwise, patterns are compressed or truncated [14]. If the 
accented syllable is followed by two or more syllables, 
differences become obvious. In our materials, nuclear accents 
were produced on disyllabic trochees. Had our rises been 
produced on longer words, the distinctions between all of 
them might have been statistically significant.  

 

5. Conclusions 
Our approach shows that intonational phonological hand-
labels can be supported by empirical acoustic evidence. We 
found that six out of seven impressionistically assigned labels 
were associated with a set of statistically different f0 patterns. 

Our methodology has a number of applications. Firstly, 
and most obviously, linguists can use the approach to 
investigate empirically the acoustic basis of their intonational 
phonological classifications. Secondly, at least potentially, the 
approach may provide linguists with access to larger bodies of 
data. In collaboration with speech technologists, intonational 
phonologists could develop methods that allow for automatic 

(c)  H*L  H% (d)  L*H  L% 

(e)   L*H  H% (f)   L*H  % 

(g)  L*  H% 

(b)   H*L  % (a)   H*  H% 

-1                 +1 -1                 +1

-1                 +1-1                 +1 

-1                 +1 -1                 +1

-1                 +1 



classification of large numbers of accents. Data from large 
corpora would allow for descriptions of accent usage in 
different texts and styles and by different speakers. Moreover, 
with large corpora, rare accent patterns could be detected.  

The approach can also add to work on the alignment of 
intonation with segmental anchors, that is, vowels, consonants 
and syllable boundaries [15, 16, 17, 18, 19, 20]. Polynomial 
models of f0 can capture changes in the average, slope and 
curvature of a contour and this information can usefully 
supplement (or in some cases, replace) hand-measurements. A 
stylised example illustrating how polynomial modelling can 
contribute to work on alignment is given in Appendix C in 
[12]. 

More generally, the approach allows for a combination of 
qualitative and quantitative comparisons of intonation systems 
across dialects and languages. Cross-linguistic and cross-
dialectal differences may involve the phonology or the 
phonetics of intonation or a combination of both. A combined 
qualitative/quantitative approach to analysis can provide new 
insights.  

Finally, the models are of value to speech technologists. 
Since the models are based on insights from linguistics, they 
are, in a sense, pre-filtered. Hand-labellers have determined 
the existence of an accent and the location of the stressed 
syllable, and they have decided on the equivalence of patterns 
on texts with different distributions of voicing and different 
numbers of syllables. But unlike hand-labels, the ‘translated’ 
data can be implemented directly in a synthesis or recognition 
system. 

We conclude that polynomial modelling is of value to 
intonational phonologists and may help to fill the gap between 
intonational phonology and speech technology.  Our results 
have shown that impressionistically salient aspects of f0 in 
nuclear accents can be expressed quantitatively, using a small 
number of mathematical terms. This approach allows for 
empirical testing of linguistic descriptions of intonation and 
opens up new avenues for collaboration. 
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