Phonotactic grammaticality is gradient

Jana Dankovičová (jana.dankovicova@phonetics.ox.ac.uk), Paula West (paula.west@phonetics.ox.ac.uk), John Coleman (john.coleman@phonetics.ox.ac.uk), Andrew Slater (andrew.slater@phonetics.ox.ac.uk)

Oxford University Phonetics Laboratory

INTRODUCTION

Generative phonology claims that English speakers can discriminate between well-formed and ill-formed non-words (e.g. /blik/ vs. /bnik/) because of their knowledge of phonotactic constraints.

Two experiments were conducted to test the psychological reality of phonotactic constraints. Many such studies have used lexical items and ill-formed non-words as stimuli. In our study, we used only non-words in order to remove the confounding factor of lexical access.

EXPERIMENT 1

Abstract

Aim To test whether native English speakers can distinguish between well-formed and ill-formed non-words.

\section*{Method}

\section*{Subjects}

6 phonetically naïve monolingual Southern British English speakers. 3 male, 3 female; all right-handed.

Stimuli

84 pairs of well-formed and ill-formed non-words were constructed. Ill-formed stimuli included unattested sequences in onset, nucleus and coda positions, as well as unattested onset-nucleus and onset-coda combinations. The stimuli were randomized and presented to subjects over high-fidelity headphones in a listening booth.

Procedure

Subjects responded by pressing one of two response buttons ('could be a possible word of English' or 'not possible'). A short practise run was followed by 2 runs of the remaining 152 stimuli.

Analysis and results

For each stimulus, the number of responses rejecting it as well-formed was totalled (the 'number of votes against well-formedness'). Data for all subjects and both runs were pooled (Figure 1).

Figure 1: Votes against well-formedness (Experiment 1)

The distributions of votes for well-formed and for ill-formed non-words were highly significantly distinct ($p<0.0005$) and ill-formed forms were, in general, judged to be significantly less acceptable than well-formed non-words.

The data contained some surprises; for example:

1) "ill-formed" /muu'perfñ/ was more acceptable than some "well-formed" items, e.g. /'splett,sak /.
2) "well-formed" stimuli composed of low frequency constituents with no close lexical neighbours had many votes against, e.g. /'finkslıp/ and / J^{\prime} 'lenð / which scored 12.

According to Generative Phonology, such cases should not arise at all.
These results, and the distribution of votes in Figure 1, suggested that phonotactic wellformedness is gradient rather than categorical.

EXPERIMENT 2

Aim

To test whether the apparent gradience exhibited in Experiment 1 is confirmed when subjects employ a rating scale instead of a binary choice.

Method

Subjects

12 subjects, (6 male, 6 female); selection criteria as in Experiment 1.

Stimuli and Procedure

As in Experiment 1. Subjects were instructed to rate the acceptability of a word on a 6 point scale ($1=$ definitely unacceptable; $6=$ definitely acceptable).

Analysis and results

For each subject, mean scores for well-formed and ill-formed stimuli were calculated (Figure 2). The two runs were analysed separately, as 5 out of 12 subjects showed a tendency to judge words less acceptable in run two.

Figure 2: Mean scores for individual subjects (Experiment 2)

Ill-formed stimuli are, in general, less acceptable than well-formed stimuli, for all subjects in both runs.

Figure 3: Distribution of scores (Experiment 2)

The distributions of mean scores (Figure 3) for well-formed and ill-formed stimuli were highly significantly different for both runs ($p<0.0001$).

All words with onset violations were rated lower than their well-formed counterparts (mean score of 2.3 vs .4) as were all words with coda violations (mean score of 2.4 vs . 3.4)

The mean rating of words with onset-coda violations was similar for ill-formed and wellformed stimuli (3.3 and 3.4 respectively)

The 5 words with the worst mean scores had ill-formed onsets. Ill-formed onsets are less acceptable than ill-formed codas, which are less acceptable than unattested onset-coda combinations.

Subjects were fairly conservative in scoring words as acceptable; 62% of "well-formed" stimuli had mean scores < 4 (i.e. unacceptable). Nevertheless, 25% of "ill-formed" stimuli had mean scores >3 (i.e. acceptable).

In a post-hoc model, we found that the cross-subject mean scores were highly significantly correlated with the \log probability of the word $\left(r^{2}=0.25, d f=110, p<0.001\right)$. The word probability was estimated as the product of the observed type probability of the constituent onsets and rimes, as in Coleman and Pierrehumbert (1997). (The probability of ill-formed parts was determined by Good-Turing estimation.) (Figure 4).

Figure 4: Mean ratings against log likelihood of word (Experiment 2)

Conclusion

We interpret the results of the experiments and the model as indicating that although grammaticality can be treated to a first approximation as a binary distinction, a more accurate picture is obtained by regarding it as a gradient (stochastic) property of words.

Reference

Coleman, J. and Pierrehumbert, J. (1997) Stochastic phonological grammars and acceptability. In Computational Phonology: Third Meeting of the ACL Special Interest Group in Computational Phonology. Madrid. 49-56.

Marslen-Wilson, W. D. and Tyler, L. K. (1981). Central processes in speech understanding. Philosophical Transactions of the Royal Society of London, B, 295, 317-332.

