
3.8. Design and use of IIR filters in Matlab

(If you do not have access to Matlab, this section can be skipped without upsetting

the flow of the course.)

The Matlab signal processing tool kit provides a number of built-in functions, sparing

us the effort of writing programs to do it in C. Matlab provides a number of functions

for designing digital filters: in particular, for selecting appropriate a’s and b’s for

filters with given frequency characteristics. By and large, I will only be using one of

the kinds of digital filter that Matlab includes — Butterworth filters — which is a

good general-purpose kind. In the Matlab manual there are the details about other

filter designs. They are conceptually very similar, and are just as easy to use, but I am

only going to use one type of filter as an example.

Listing 3.4. Example of filtering in Matlab

>> fid = fopen(’joe.dat’,’r’);
>> In = fread(fid,6000,’short’);
>> [b,a] = butter(5,600/4000);
>> Loband = filter(b,a,In);
>> [bb,aa] = butter(4,3000/4000,’high’);
>> Hiband = filter(bb,aa,In);
>> fid2 = fopen(’joe_lp.dat’,’w’);
>> fwrite(fid2,Loband,’integer*2’);
>> status = fclose(fid2);
>> fid3 = fopen(’joe_hp.dat’,’w’);
>> fwrite(fid3,Hiband,’integer*2’);
>> status = fclose(fid3);

Listing 3.4 gives an example of how you can design and use digital filters in Matlab.

Rather than being a program, it records a sequence of commands typed by the user

during an interactive session with Matlab. The double “greater than” at the beginning

of each line is the Matlab prompt. Matlab isn’t compiled, it is just an interpreter, so

you can type each line in after the prompt and it does each operation as you tell it to.

You have to start Matlab by typing “matlab” to begin with.

Student: Right, so you get a Unix prompt and then you just type Matlab.

Yes, and then this >> prompt comes up.

Student: So these double arrows are the Matlab prompt, OK, and then each line is an

instruction.

Yes, it is an instruction to Matlab. Now I will briefly go through them, line-by-line,

because it is fairly typical of the kind of interaction that you might have when using

Matlab tools. The first two lines open the file joe.dat and reads some of it (“Joe

took fath—”) into the vector variable In. In then next four lines, we design some

filters, we apply the two filters to the original signal to create two new signals, and in

the remaining six lines we write each of those new signals to a file.

So, in the first line, we open the file joe.dat for reading. fid is a file identification

number, the number that Matlab assigned to joe.dat. Line 2 reads in 16000

samples: the fread statement is short for “file read”: “from fid read 16000 shorts

and put them in In”, which is a variable name for a Matlab array, a column vector in

fact. OK so we put the signal there and forget about it. Now the thid step is something

different; here we design the first filter. It is a Butterworth filter, so the function name

is butter. The number 5 means that we want a fifth order filter, which means that

we want a filter that refers to the present value of the input and the five previous ones,

six in all, in fact. 600/4000 specifies the cut-off frequency of the low pass filter that

we want to design, 600 Hz: the 4000 in the denominator is half of the sampling rate.

(We could have put 0.15 instead of 600/4000, but expressing the cut-off frequency as

a fraction enables us to adapt this listing to other cut-off frequencies and other sample

rates more easily.) Remember from chapter 1 that the sampling theorem says that the

highest frequency that you can measure is half the sampling rate; that is where the

number 4000 in this expression comes from. (It is known as the Nyquist frequency:

half the sampling rate is the highest frequency you can analyse; see section 2.5.) Once

again we express frequency as a ratio of the sampling frequency, just as we did in

table 3.3. But unlike table 3.3, here we are relating the desired frequency to half the

sampling frequency. Matlab requires it this way; but the idea of expressing frequency

as a ratio is basically the same, OK?

Now when you enter line 3, that generates a sequence of b’s and a sequence of a’s,

which are the desired coefficients in the general equation for the IIR filter. They will

be whatever numbers they are. We don’t care what they are: we are primarily

interested in are the acoustic characteristics of the filter. We need to get the a’s and

b’s somehow, and that is what this function does. That is why on the left hand side of

line 3 in square brackets it says [b,a]: it means vector b (a sequence of b’s) and

vector a, a sequence of a’s. Right?

Student: Yes.

In line 4 we apply the filter to the input wave In, using the given b’s and a’s. That is

what “filter(b,a,In)” means. We put the result of that in a variable called

Loband. So Loband is the output of applying the filter to the input, a filter with

stated b and a coefficients. OK, did you understand that all now?

Student: Yes: Loband is the result of applying the filter to the input.

Yes, that is right, that is exactly right.

OK, now, in line 5 we design a new filter, and I am going to call the vectors that store

the b’s and a’s of this filter bb and aa. Because we are designing another filter, with

a new set of coefficients, we can use new variable names. You can call them what you

like; you can call them anew and bnew if you like; it doesn’t make any difference.

Student: They are new multipliers.

You can call them x and y, you can call them anything you like. It doesn’t matter. In

line 3 I only called them b and a out of convention, because it looks like the examples

in the textbooks, but they are just variables so you can name them pretty much

whatever you want.

Lines 5 and 6 define and apply a high pass filter to the same input, In. Line 7 is like

the first line, except that it mentions a different file name, and we are opening it to

write, not to read. That is why it doesn’t say ’r’ at the end, it says ’w’, meaning we

are opening a file to write to. Here we are only opening it though, it isn’t yet written.

Matlab creates a new file called joe_lp.dat. Line 8 is where we actually do the

writing: fwrite means “file write”, fid2 refers to joe_lp.dat, as defined in

line 7, and Loband is the variable containing the low-pass filtered signal. We also

have to specify what kind of objects to write. Curiously, to write shorts we have to

state ’integer*2’, meaning two-byte integers. MATLAB can write out numbers

in various ways. It could write them out as ASCII text, it could write them out as

floating point numbers, or in other formats. So we are going to write them out as two-

byte integers.

After we have written the file we have to close it. That is what fclose does on line

9. The next 3 lines open, write and close the file joe_hp.sd using the signal stored

in the variable Hiband. Easy peasy, yes?

Student: That is great, it really works doesn’t it!

It really works, yes, and it is very simple.

