Intonation of FIFTEEN

- Using wavesurfer, ESPS get_f0 to obtain f_{0} time-series

Intonation of FIFTEEN

- Using wavesurfer, ESPS get_f0 to obtain f_{0} time-series

Intonation of FIFTEEN

- Using wavesurfer, ESPS get_f0 to obtain f_{0} time-series

Intonation of FIFTEEN

- wavesurfer uses the ESPS get_f0 command to obtain f_{0} time-series
- syntax: get_f0 [options] input_file output_file

ESPS is a package of UNIX-like commands and programming libraries for speech signal processing.

You can download a recent .deb package for ESPS from http://www.phon.ox.ac.uk/releases

David Talkin's paper on get_f0 is here: http://www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf

Intonation of FIFTEEN

- Using wavesurfer, ESPS get_f0 to obtain f_{0} time-series
- syntax: get_f0 [options] input_file output_file
for i in *.wav
> do get_f0 \$i \$i.f0
> pplain \$i.f0 >\$i.f0.cSv
> done

On one line, that's:

```
for i in *.wav; do get_f0 $i $i.f0; pplain $i.f0 >$i.f0.csv; done
```

```
```

0000.272821

```
```

0000.272821
0 34.4253 0.551759
0 34.4253 0.551759
0 44.9999 0.641592
0 44.9999 0.641592
0 242.326 0.515299

```
0 242.326 0.515299
```

```
176.8941401.0170.553706
```

176.8941401.0170.553706
174.4341399.1130.931412
174.4341399.1130.931412
167.352 1 378.998 0.951326
167.352 1 378.998 0.951326
162.623 1 358.704 0.927735
162.623 1 358.704 0.927735
160.7341356.843 0.931884
160.7341356.843 0.931884
154.3451250.1320.617554
154.3451250.1320.617554
170.1071159.65 0.843205
170.1071159.65 0.843205
0 }02.26620.49466
0 }02.26620.49466
0 92.7429 0.730789
0 92.7429 0.730789
0 }0110.420.43357
0 }0110.420.43357
0 71.1711 0.53332
0 71.1711 0.53332
0 59.65410.419894
0 59.65410.419894
0 62.9074 0.538716
0 62.9074 0.538716
0 53.2908 0.319767
0 53.2908 0.319767
0 47.0340.288603
0 47.0340.288603
0 38.5281 0.346631
0 38.5281 0.346631
0 47.2128 0.452121
0 47.2128 0.452121
0 50.4091 0.43822
0 50.4091 0.43822
0 44.2441 0.568226
0 44.2441 0.568226
--More--(28%)

```
--More--(28%)
```

- These .csv files are simple ASCII text files like this:

- The first column is f_{0}, the second is voicing; ignore the other two

Intonation of FIFTEEN3

- You can open a .csv file in a spreadsheet programme, and plot the data (see, you don't have to have Praat or wavesurfer to draw speech parameters)

Intonation of FIFTEEN165

- You can open a .csv file in a spreadsheet programme, and plot the data (see, you don't have to have Praat or wavesurfer to draw speech parameters)

How you could analyse intonation ...

- Many approaches to phonetic analysis focus on particular points of interest in the time series, e.g.

How you could analyse intonation ...

- Many approaches to phonetic analysis focus on particular points of interest in the time series, e.g.

How you could analyse intonation ...

- Many approaches to phonetic analysis focus on particular points of interest in the time series, e.g.

Intonation of FIFTEEN3

- With the discontinuity (voiceless portion) excised:

Intonation of FIFTEEN3

- Cf. a linear regression line; it may not look quite so good, but it's actually a better fit (to the whole line)

Intonation of FIFTEEN3

- A logarithmic regression curve fits better

Could we discover anything from the details of this equation?

Why single-point measurements of sampled data are not great

-What is the true minimum of this curve? - 9968 or -9969 ?

Why single-point measurements of

 ∞ sampled data are not great What is the true minimum ${ }^{18}$ of this curve? ${ }^{17}$? 9966^{18} or -9969 ?

Functional Data Analysis

- Modelling sampled data using (continuous) functions
- General approach:
- Possibly smooth the data a bit, to iron out irrelevant wiggles
- Possibly normalize the data
- Registration: some sort of time alignment of the individual tokens (not always necessary)

Functional Data Analysis

Choose a general kind of (basis) function that looks like your data

- For periodic data: Fourier series
- For nonperiodic data: B-splines sometimes:

Orthogonal Polynomials (Example 1)

- others are possible
- Probability density functions
- E.g., for normally-distributed data: Gaussians
(Example 2)
Fit the function to the data
i.e. find the parameters of the function that minimizes the differences between the function and the data

Orthogonal polynomials in Octave/Matlab

- Put numeric data into Matlab's vector notation: $\quad \mathrm{y}=$
[176.894;

```
f0 = load('FIFTEEN3.wav.f0.csv');
y = y (y>0);
```

$\mathrm{y}=\mathrm{f} 0(:, 1)$; 167.352;
174.434;
162.623;
160.734;
88.6733];

- Normalize it: \quad yn $=y /$ mean $(\mathrm{y})-1$;
- (Better: $\quad y m=y n / \max (\operatorname{abs}(y n))$;
- Normalize the time dimension to the interval [-1 1], and turn it into a column vector:

```
    x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);
    x = x';
```


Orthogonal polynomials in Octave/Matlab

- Fit the normalized data to a polynomial (e.g. a cubic)

$$
y=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}
$$

$$
[a, s]=\operatorname{polyfit}(x, y n, 3) ;
$$

$$
\text { Output values: } a=0.19321 \quad 0.63340-0.70280-0.19866
$$

-The fitted function is given by fit = getfield(S, 'yf'); and restored to the original units (e.g. Hz)

$$
\text { ysynth }=\operatorname{mean}(y) *(f i t+1) ;
$$

Orthogonal polynomials in Octave/Matlab

- Fit the normalized data to a polynomial (e.g. a cubic)

$$
\begin{aligned}
& y=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+ \\
& +\quad a_{4} \\
& \text { height } \\
& \text { Output values: } \mathrm{a}=0.19321 \text { 0.63340-0.70280 }-0.19866
\end{aligned}
$$

Orthogonal polynomials in Octave/Matlab

- Fit the normalized data to a polynomial (e.g. a cubic)

Orthogonal polynomials in Octave/Matlab

- Fit the normalized data to a polynomial (e.g. a cubic)

Orthogonal polynomials in Octave/Matlab

- Fit the normalized data to a polynomial (e.g. a cubic)

-The fitted function is given by fit = getfield(s, 'yf'); and can be restored to the original units (e.g. Hz) by

$$
\text { ysynth }=\operatorname{mean}(y) *(f i t+1) ;
$$

Orthogonalisation

- Translate polynomial coeffients into orthogonal (Legendre) polynomial coeffs:

$$
\mathrm{c}=[0.4 * \mathrm{a}(1) 2 * \mathrm{a}(2) / 3 \mathrm{a}(3)+6 * \mathrm{a}(1) / 5 \mathrm{a}(4)]
$$

$$
\begin{array}{llll}
\% \% \mathrm{a}=0.19321 & 0.63340 & -0.70280 & -0.19866 \\
\% \% \mathrm{c}=0.077284 & 0.422269 & -0.470948 & -0.198659
\end{array}
$$

Loop over all the "good" files

```
for i = 2:172
    eval(['fid = fopen(''FIFTEEN',int2str(i),'.wav.f0.csv'');']);
    if (fid ~= -1) %% checks file FIFTEEN i .. exists
        eval(['f0 = load(''FIFTEEN',int2str(i),'.wav.f0.CSv'');']);
        y = f0(:,1);
        y = y(y>0);
        yn = y/mean (y) -1;
        x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);
        x = x';
        [a,S] = polyfit (x,yn,3);
        c = [0.4*a(1) 2*a(2)/3 a(3)+6*a(1)/5 a(4)];
        C(i,:) = [i c];
    end
```

end
save('coeffs.csv','C');

Now do your statistics

- Rather than applying statistical tests to the raw data, examine the means, variances etc of the coefficients of the functions you're using to model the data

