
Intonation of FIFTEEN
• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Intonation of FIFTEEN
• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Right mouse
“Save Data As ...”

to save f0 measurements
to a text file

Intonation of FIFTEEN
• Using wavesurfer, ESPS get_f0 to obtain f0 time-series

Right mouse
“Save Data As ...”

to save f0 measurements
to a text file

But what if you have
thousands of files?

Intonation of FIFTEEN
• wavesurfer uses the ESPS get_f0 command to obtain f0 time-series
• syntax: get_f0 [options] input_file output_file

ESPS is a package of UNIX-like commands and programming
libraries for speech signal processing.

You can download a recent .deb package for ESPS from
http://www.phon.ox.ac.uk/releases

David Talkin's paper on get_f0 is here:
http://www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf

Intonation of FIFTEEN
• Using wavesurfer, ESPS get_f0 to obtain f0 time-series
• syntax: get_f0 [options] input_file output_file

for i in *.wav
> do get_f0 $i $i.f0
> pplain $i.f0 >$i.f0.csv

d> done

On one line, that’s:

for i in *.wav; do get_f0 $i $i.f0; pplain $i.f0 >$i.f0.csv; done

• These .csv files are simple ASCII
text files like this: ------------�

• The first column is f0, the second
is voicing; ignore the other two

0 0 0 0.272821
0 0 34.4253 0.551759
0 0 44.9999 0.641592
0 0 242.326 0.515299
176.894 1 401.017 0.553706
174.434 1 399.113 0.931412
167.352 1 378.998 0.951326
162.623 1 358.704 0.927735
160.734 1 356.843 0.931884
154.345 1 250.132 0.617554
170.107 1 159.65 0.843205
0 0 82.2662 0.494668
0 0 92 7429 0 7307890 0 92.7429 0.730789
0 0 110.42 0.433576
0 0 71.1711 0.53332
0 0 59.6541 0.419894
0 0 62.9074 0.538716
0 0 53.2908 0.319767
0 0 47.034 0.288603
0 0 38.5281 0.346631
0 0 47.2128 0.452121
0 0 50.4091 0.43822
0 0 44.2441 0.568226
--More--(28%)

Intonation of FIFTEEN3
• You can open a .csv file in a spreadsheet programme, and plot
the data (see, you don't have to have Praat or wavesurfer to
draw speech parameters)

140

160

180

200

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73

Intonation of FIFTEEN165
• You can open a .csv file in a spreadsheet programme, and plot
the data (see, you don't have to have Praat or wavesurfer to
draw speech parameters)

250

300

0

50

100

150

200

1 5 9 13 17 21 25 29 33 37 41 45 49

160

180

200

How you could analyse intonation ...
• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

160

180

200

How you could analyse intonation ...
• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

H* L

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

time of H* time of L

160

180

200

How you could analyse intonation ...
• Many approaches to phonetic analysis focus on particular
points of interest in the time series, e.g.

H* L But there are 44 f0
measurements in this

contour. Should we throw
42 of them away?

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73

time of H* time of L

The peak and trough
give 2 f0 measurements

140

160

180

200

Intonation of FIFTEEN3
• With the discontinuity (voiceless portion) excised:

The slope of this portion is
interesting, but should it

be based on just 2 points?

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Intonation of FIFTEEN3
• Cf. a linear regression line; it may not look quite so good,

but it's actually a better fit (to the whole line)

140

160

180

200

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Intonation of FIFTEEN3
• A logarithmic regression curve fits better

y = -40.0ln(x) + 209.0150

200

250

Could we discover anything
from the details of this

equation?

y 40.0ln(x) + 209.0
R² = 0.846

0

50

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Why single-point measurements of
sampled data are not great

• What is the true minimum of this curve? - 9968 or -9969?

5000

10000

15000

0 5 10 15 20 25 30 35 40

-15000

-10000

-5000

0

-9968 or -9969 ?

9200

-9000

-8800

-8600

-8400

-8200

15 16 17 18 19 20 21 22 23

Why single-point measurements of
sampled data are not great

What is the true minimum of this curve? - 9968 or -9969?

-10200

-10000

-9800

-9600

-9400

-9200

-9968 or -9969 ?
Answer: neither.
The true value is -10000; it
is a cosine function x10000

Functional Data Analysis

• Modelling sampled data using (continuous) functions

• General approach:

– Possibly smooth the data a bit, to iron out irrelevant wiggles
– Possibly normalize the data

R i t ti t f ti li t f th i di id l– Registration: some sort of time alignment of the individual
tokens (not always necessary)

Functional Data Analysis

Choose a general kind of (basis) function that looks like your data

• For periodic data: Fourier series
• For nonperiodic data: B-splines

sometimes: Orthogonal Polynomials (Example 1)
• others are possible

• Probability density functions
• E.g., for normally-distributed data: Gaussians (Example 2)

Fit the function to the data
i.e. find the parameters of the function that minimizes the
differences between the function and the data

Orthogonal polynomials in Octave/Matlab

• Put numeric data into Matlab's vector notation:

N li it

y =
[176.894;
174.434;
167.352;
162.623;
160.734;
...
88.6733];

f0 = load('FIFTEEN3.wav.f0.csv');
y = f0(:,1);
y = y(y>0);

• Normalize it:

• Normalize the time dimension to the interval [-1 1], and turn it
into a column vector:

yn = y/mean(y) -1;

x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);
x = x';

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

[a,S] = polyfit(x,yn,3);

•The fitted function is given by
and restored to the original units (e.g. Hz)

fit = getfield(S,'yf');

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

ysynth = mean(y)*(fit+1);

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

[a,S] = polyfit(x,yn,3);

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

slope
(steepness
anddirection)

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

breadth of
curvature

slope
(steepness
anddirection)

average
height

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

Orthogonal polynomials in Octave/Matlab

• Fit the normalized data to a polynomial (e.g. a cubic)

y = a1x
3 + a2x

2 + a3x + a4

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

•The fitted function is given by
and can be restored to the original units (e.g. Hz) by

fit = getfield(S,'yf');

Output values: a = 0.19321 0.63340 -0.70280 -0.19866

ysynth = mean(y)*(fit+1);

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Steep and
downwards

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

downwards

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Wide and concave

a = 0.19321 0 .63340 -0.70280 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Not very
much!

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

A bit more
sinuous

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Narrower and
convex

Fif 'TEEN

a = -0.279631 -0.139361 0.185936 -0.19866

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Gently
upwards

Red: cubic
Green: quartic

Adding more terms

a = -0.279631 -0.139361 0.185936 -0.19866
a = 0.019243 -0.281304 -0.155766 0.18665 0.050168

amount of
∼ -shaped
wiggle

breadth of
curvature

slope
(steepness
and direction)

average
height

Orthogonalisation

� Translate polynomial coeffients into
orthogonal (Legendre) polynomial coeffs:

c = [0.4*a(1) 2*a(2)/3 a(3)+6*a(1)/5 a(4)]

%% a = 0.19321 0.63340 -0.70280 -0.19866
%% c = 0.077284 0.422269 -0.470948 -0.198659

Loop over all the “good” files
for i = 2:172

eval(['fid = fopen(''FIFTEEN',int2str(i),'.wav.f0.csv'');']);

if (fid ~= -1) %% checks file FIFTEEN i ... exists

eval(['f0 = load(''FIFTEEN',int2str(i),'.wav.f0.csv'');']);

y = f0(:,1);

y = y(y>0);

yn = y/mean(y)-1;

x = ((1:length(yn))-length(yn)/2)/(length(yn)/2);

x = x';

[a,S] = polyfit(x,yn,3);

c = [0.4*a(1) 2*a(2)/3 a(3)+6*a(1)/5 a(4)];

C(i,:) = [i c];

end

end

save('coeffs.csv','C');

