
30 More than seventy years of

probabilistic phonology

Janet B. Pierrehumbert

Abstract: The idea that phonology is probabilistic goes back to

Pān. ini, and the classic distinction between accidental and systematic gaps

in the lexicon is implicitly probabilisitic. This idea took on new vigour just

over 70 years ago with Shannon’s work on information theory. It is now

supported by a wide variety of studies concerning all levels of representation

in the theory of sound structure. Models that use probabilities have had

striking successes in capturing how people learn the sound patterns of their

language from experience, and deploy their knowledge productively and

adaptively. However, people’s patterns in production often deviate

systematically from the statistical patterns in the input they receive.

Cognitive biases, propensities for regularity and structure, and social

influences on attention and memory, all play important roles.

30.1 Introduction

Human languages have extremely large lexicons, compared to animal

communication systems. These lexicons are made possible by the

phonological principle, according to which a relatively small number

inventory of elements of sound structure that are not meaningful in

themselves can be recombined in many different ways to create a much

larger number of complex forms that are associated with meanings. This
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means that any given word or phrase can be analysed either at the

phonological level or at the semantic level, according to the concept of

‘duality of patterning’ developed in Hockett (1958, 1960); see Ladd, this

volume, for further discussion. The inventory of phonological elements is

language-specific, as are the constraints on their combinations. However,

there are striking regularities in the possible relationships amongst elements

and the systems of constraints that are found across languages. These

regularities point to commonalities not only in the phonetic grounding of

phonology in human articulatory and perceptual capabilities, but also in

the cognitive system that allows individuals to acquire and use a

phonological system from experience with language. In this chapter, I will

review the history of an important claim about this cognitive system,

namely the claim that statistics play a central role: the phonological

grammar is acquired by a process of statistical inference over linguistic

events of different frequencies, and furthermore the resulting mental

representations incorporate probabilities in some manner. Note that

following standard usage, I will use the term ’frequency’ for how often

something happens, and the word ’probability’ for the likelihood that it

would happen, in comparison to alternative outcomes. Frequency is

reported as a count, whereas probability is reported as a number between

zero and one, obtained by dividing the frequency by the total count for all

the different alternatives.

The claim that phonology is probabilistic has a long history, but a

turning point in this approach was the development of information theory

just over 70 years ago in Shannon (1948). Information theory provides a
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rigorous foundation for formalizing and evaluating this claim; hence the

title of this chapter. The claim follows—indirectly—from the fact that any

empirically observed lexicon is a sparse sample of the forms that adult

speakers would accept and would be able to produce, encode, and

remember. Phonologists as language scientists aim for synoptic

phonological grammars of individual languages. That is, by providing a

compressed, abstract, and general description of the word forms in a

language, the grammars should encompass not only the words that were

observed, but also words that might exist, but weren’t observed. Like other

scientists, we are inspired to evaluate the success of our theories by testing

them against previously unseen data. But furthermore, ordinary speakers

resemble scientists because their implicit knowledge is itself abstract,

general, and predictive, as revealed in the ability to encode, remember, and

create previously unseen word forms. In addition to borrowings from other

languages and novel proper names, these include novel combinations of

morphemes, word blends, technical terms, and slang words. Thus, the

acquisition of phonology resembles the process of constructing a scientific

theory by a process of inference from patterns in the data. As with many

other examples of scientific inference, a probabilistic model has access to

information that is discarded in models without frequency information, and

it can use this information to succeed in making predictions. More precisely,

it can exploit empirical observations more optimally than a model using

only Boolean logic, in which the value of any variable or formula can only

be 1 (true) or 0 (false). Because a Boolean model assigns the value of 1

(true) to anything that was observed—no matter how often or rarely it was
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observed—it throws away information. It is, for example, unable to predict

that novel combinations of things that are individually frequent are much

more likely to appear in the future than novel combinations of things that

are individually rare. Insofar as people behave optimally and use all

available information to learn phonological generalizations, we hypothesize

that they use probabilistic information.

Implicit knowledge of phonological generalizations is revealed in a wide

variety of productive or adaptive behaviour. Classically, generative

phonology has main concerns. First, is the phonological grammar of any

given language capable of enumerating all and only the possible words?

This criterion is intrinsically probabilistic because the observed words are

considered to be a random sample from a very much larger set of possible

words. Thus, the set of words that are well-formed according to the

grammar needs encompass all the observed words1. Delving in more deeply,

the accidental gaps are just the possible words that – entirely by chance –

failed to appear in the sample; according to the Oxford English Dictionary,

‘accidental’ means ‘relating to or occurring by chance’. And the concept of

chance is exactly what receives a precise construction in the theory of

probability. Because accidental gaps occurred by chance, we expect that

they might be real words in an alternative universe in which the lexicon

was a different random sample of the possible words.

A particularly accessible alternative universe is the one in which we

simply ask native speakers to add a few words to their existing lexicon – for

1 Exceptions to this requirement are sometimes made for a small number of anomalous

forms, such as foreign proper names and onomatopoeic expressions.
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example, by asking them to adopt nonce forms like /strImpi/ and

/zgEmTu/ as slang words in a futuristic novel, or names for new products.

If /strImpi/ represents an accidental gap in the lexicon, we expect that

speakers will accept it readily, and indeed they do (Hay, Pierrehumbert, &

Beckman 2004a). In contrast to accidental gaps, systematic gaps did not

occur by chance and are not expected to be filled. If English speakers reject

/zgEmTu/, this would be evidence that it represents a systematic gap.

Thus, the distinction between accidental and systematic gaps is directly

connected to the second classic concern of generative phonology, namely

well-formedness judgements of nonce word forms. Well-formedness

judgements represent the conscious, meta-level, application of

generalizations that are otherwise merely implicit. Such judgements have

turned out to be gradient in a manner that reflects empirical frequencies.

These two outcomes do not exhaust the sources of information about

the cognitive representation of phonology, however. Unconscious

interpretative processes are at least as important and illuminating. These

include the inferences that allow infants to acquire the phonology of their

native language. The processes of encoding speech signals, forming lexical

representations for novel words, and perceptually adapting to different

interlocutors in adulthood also reveal aspects of the cognitive

representation of phonology.

Research on cognitive models of phonology has actively explored the

role of probabilistic information for more than seven decades, leading to

many different observations and theories. An important dimension along

which these theories vary is their claims about the relationship between
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empirical frequencies and the cognitive reflexes of frequency. In the

extreme, some researchers, such as Labov (1989), claim that humans

typically probability-match the input. That is, any variation in the input

will be cognitively encoded and matched in subsequent productions. Other

researchers have focussed on more general outcomes that indicate the

importance of empirical frequencies, even if the outcomes differ significantly

from probability matching. Arguing against purely Boolean models of

phonology, these researchers have established the existence of gradient and

cumulative effects that are correlated with empirical frequencies. However,

in some cases the outcomes differ significantly from probability-matching,

because they exaggerate, attenuate, or filter empirical frequencies. To

explain such outcomes, these researchers propose cognitive mechanisms that

have more complex or indirect sensitivity to frequency than a simple

probability-matching learning algorithm would have; these proposals will be

further discussed in Section 30.6.

In this chapter, we first review some of the concepts and results that

provide a foundation for probabilistic theories of phonology. Any theory of

phonology needs an ontology, understood as an inventory of entities and

relations that play a role in the theory. In a probabilistic theory, these

become the entities and relations that may support probabilistic scores. For

example, if the phoneme is a unit in the theory, the frequency of the

phoneme is available in the probabilistic theory. In Section 30.2, we begin

by reviewing the levels of representation and the entities defined at different

time scales that play a role in any insightful and predictive theory. In

Section 30.3, we develop the relationship between statistical learning and
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productivity. Section 30.4 reviews probabilistic models of the mappings

between phonology and phonetics (on the one hand) and morphophonology

(on the other hand). Section 30.5 provides an overview of experimental

results establishing correlations between corpus statistics and various kinds

of linguistic behaviour. Finally in Section 30.6, we discuss the extent to

which the correlations described in Section 30.5 indicate that language

learning is probability-matching, meaning that the likelihoods of different

variants are the same in the learner’s output as they were the input the

learner experienced. We will review some of the most important deviations

from probability-matching that have been established, but still conclude

that probability matters.

30.2 Probabilities of what?

Since the 19th century work of Baudoin de Courtenay (Koerner 1972;

Radwańska-Williams, this volume), it has been acknowledged that language

sound structure involves (at least) three levels of representation: phonetics,

word-level phonology, and morphophonology. Lakoff (1993) provides a

recent and clear exposition of how constraints within levels and between

pairs of levels can effectively capture patterns in Mohawk, Lardil, and other

languages previously thought to require deep rule ordering. The model

would allow five different loci for probabilistic information to be included:

the three levels of representation, plus the relations between adjacent levels

(relations of morphophonology to word-level phonology, and relations of

word-level phonology to phonetics).
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The research literature has used all five of these loci. Here are some

examples. Probabilistic constraints applying within the morphophonological

level are exemplified by the constraints in Arabic and many other languages

that disfavour combinations of homorganic consonants in close proximity

(McCarthy 1988, 1994; Frisch, Pierrehumbert, & Broe 2004). These are best

defined at the morphophonological level because their effects are obscured

at the phonological level by cases in which multiple copies of the same

consonant fill out word-level structural templates. Within Finnish

word-level phonology, there is a dispreference for heavy syllables containing

high vowels, and also for light syllables containing low vowels. Extending

the framework of Optimality Theory, Anttila & Cho (1998) develop a

probabilistic model of how the competition between these two constraints

plays out for a subset of the forms for the genitive plural. Some stems may

have either a trisyllabic genitive plural form (which meets one constraint)

or a disyllabic form (which meets the other constraint). The synchronic

variation between these two outcomes is effectively captured through

variable constraint ranking. At the phonetic level, there is evidence that

infants implicitly learn many statistical properties of the the

acoustic-phonetic patterns of their language even before they acquire the

lexical inventories that define the phonological level (Werker & Tees 1984).

Variable rules, the mainstay of sociophonetics (Sankoff & Labov 1979),

typically describe the probabilistic relation between word-level phonology

and a phonetic outcome. However, analogous issues arise in the variable

relations between the morphophonological and phonological levels (Guy

1991). While the standard formalization of variable rules using logistic
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regression was only achieved in the 20th century, the core concepts date

back to the ancient Sanskrit grammarian Pān. ini (Cardona 1965); for

further discussion see Kiparsky, this volume.

Within any given level, there are also important questions about the

interactions of probabilities at different time scales. Some articulators, such

as the tongue tip, are much faster than others (such as the jaw or the

velum), and some contrasts in sound structure are realized as much faster

events than others. For example, the flap in an English word like putting is

typically around 25 msec, whereas the rise in fundamental frequency for a

yes/no question (heard as a rise in pitch) can easily take 40 times longer,

spanning many syllables. How should we understand the relationships

amongst regularities that can be observed at all these different time scales?

Different versions of phonemic theory were ill-suited to integrating

information at different times scales because they posited a one single

privileged timing unit (the phoneme), mapping to the allophone at the

phonetic level. In these theories, the phonological representation resembled

‘beads on a string’, in which ’beads’ (the phonemes or speech segments)

were assembled in sequences, and no suprasegmental or subsegmental

structures were defined. While it was never claimed that all phonemes had

the same duration, phonemes still had a privileged role in explaining how

speech is produced in time as a sequence of articulatory actions and

perceived as a sequence of contrastive acoustic events. The traditional

taxonomic phonemic level was eliminated in Chomsky & Halle (1968), and

the systematic phonemic level they proposed is more similar to the
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morphophonological level in the traditional theory;2 the representation

manipulated throughout the derivation is a matrix in which the rows are

distinctive features and the columns are phoneme-sized bundles of

distinctive features. However, this theory retains the assumption that the

privileged timing unit is phoneme-sized. While Chomsky & Halle (1968)

and others acknowledged that some systematic patterns (such as is the

complicated alternating patterns of English stress) appear to be defined at

larger time scales, the theoretical account of these patterns coerces them

into a Procrustean bed of phoneme-sized timing units.

During the 1970s and 1980s, autosegmental-metrical phonology

systematically explored phonological regularities at different time scales,

and proposed an ontology in which units larger than the phoneme also play

critical roles.3 Phonological constraints at time scales larger than the

phoneme are described with reference to these larger units. Defining these

units in the right way allows simple formulations of many constraints that

appear complex and unwieldy when described using phoneme sequences or

distinctive feature matrices. Widely accepted units include the syllable, the

metrical foot, and the intonation phrase. Cross-cutting the hierarchical

units of metrical phonology are the domains of important autosegmental

constraints, which refer to spans of timing units. Examples include tone

spreading (whereby a tone is realized on a sequence of vowels, and not just

one vowel), vowel harmony, and constraints on voicing or nasal assimilation

at syllable junctures (Goldsmith 1990; Pierrehumbert & Beckman 1988; Ito

2 For discussion, see Ladd and Dresher & Hall, both this volume.
3 On autosegmental and metrical phonology, see Kisseberth, this volume.
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1988).

Both autosegmental constraints and metrical trees can be treated

probabilistically. Autosegmental constraints fundamentally deal with

sequential probabilities, and formal approaches all extend Shannon’s use of

Markov models in analyzing sequences of letters (see below). The articles

on Arabic mentioned above all analyze probabilities on autosegmental tiers

that have projected away from the vowels that come between the

consonants. The tree structures used in the prosodic hierarchy might seem

to require a more powerful formalism, such as a stochastic context-free

grammar (Charniak 1997). However, extended Markov models as described

below have been more used in practice. Examples of this approach include

the treatment of lexical stress in Coleman & Pierrehumbert (1997) and the

treatment of phrasal intonation in Ostendorf & Ross (1997).

30.3 Statistical learning and productivity

At central goal of generative phonology is to understand how language

learners can acquire the general abstract system that enables them to

produce and understand novel forms. This means understanding the

relationship between learning and productivity. A good point of departure

for understanding this relationship is Shannon (1948) (see also Shannon &

Weaver 1949), which laid out the foundations of information theory, and

was a major influence on the work of Charles F. Hockett, Roman Jakobson,

and others (as discussed in Dresher & Hall, this chapter). The paper

includes a section on the applicability of Markov processes for describing
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English text. We can take English letters as analogues of phonemes, in that

they provide a small number of coding symbols that are combined in

various orders to specify word forms. Markov processes are examples of

finite state grammars, which represent the lowest and most tractable level

of what subsequently became known as the Chomsky hierarchy (Chomsky

1956).4 Finite state grammars capture local constraints on sequences, where

‘local’ means that the constraints can be defined using a fixed-sized window

on the sequences that occur in the language. A sequence of n consecutive

elements is referred to as an n-gram. A unigram (or 1-gram) grammar

allows only a single element to be visible at once. A bigram (or 2-gram)

grammar allows sequences of two elements to be visible at once, and so

forth. Taking the last position in the n-gram as the ‘current’ position, the

order n of the grammar thus determines the size of the history that can be

taken into account in constraining the current position. In a non-stochastic

finite state grammar, a transition is either possible or not. However, in a

Markov process, probabilities are assigned to the transitions, capturing the

fact that some continuations of any given sequence are likely while others

are rare, but still possible.

Having only local constraints, Markov processes provide very attractive

correspondences amongst learning, parsing, and generation. The nature of

these correspondences is known mathematically, and they are efficiently

computable. A grammar can be acquired from a linguistic sample by

tabulating all the n-grams of the relevant order in the sample, with their

frequencies. This grammar can be used as a parser; given an example of a

4 On finite state grammers, see Chandlee & Jardine, this volume.
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new sequence, it can determine whether or not a new sequence is within the

language of the training set at all; and if it is, whether it is more or less

likely to occur. The grammar can also be used as a generator, in which case

it will produce not only existing sequences but also novel sequences, thus

providing predictions about phonological productivity.

Shannon’s tutorial examples illustrate the sequences that can be

generated for letter and word grammars of various orders as trained on an

English corpus. Examples like (1) result if letters are selected at random

and are equally probable.

(1) XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD

...

A unigram model that selects letters with the empirically observed

frequencies, but without any reference to the context, yields the following

example:

(2) OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

ALHENHTTPA ...

(2) improves over (1) chiefly because it uses the letters for vowels much

more frequently than (1) does. However, substrings such as NBN in (2)

reflect the fact that the contextual constraints are being completely ignored.

Using bigram statistics, the results resemble English to some extent.

(3) ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY

ACHIN D ILONASIVE ...

With trigram statistics, the results begin to look quite realistic:
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(4) IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID

PONDENOME OF DEMONSTURES OF THE REPTAGIN IS ...

The comparison of these four models suggests that probabilistic

sequential constraints are very important in phonology. The bigram model

(3) improves on (1) and (2) because it can capture the alternation of

consonants and vowels in core syllables, as well as constraints on syllable

contacts. However, it still generates some impossible sequences, such as

word-initial CT. Since C can occur before T in English (as in act), the

bigram grammar will permit it in all positions. The trigram model is

capable of allowing CT medially or finally but not word-initially, because it

can refer to the word boundaries as if they were phonemes, differentiating

#CT sequences (which do not exist in English), from CT# sequences,

which do exist. In summary, each n-gram model generates a subset of the

sequences that are generated by the next simpler model. The higher the

value of n, the more stringent the n-gram model and the more its outputs

conform to the actual patterns of English. In technical terms, the precision

of the model (the fraction of generated forms that are valid) increases as

the order increases. The flip side is that the recall (the fraction of valid

forms that are generated) deteriorates if the order becomes too high. A

4-gram or 5-gram model is incapable of generating sequences such as

HANCH and LONT that are clearly accidental gaps in the lexicon. In the

limit, the model includes only attested words and has no ability to generate

or parse novel words at all. Thus, the best model must strike a balance

between being overly simple (and therefore over-generating) versus being

overly detailed (and therefore failing to support generalizations). This
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observation about n-gram models extends to all models that support the

triad of learning, generation, and parsing.

Shannon also shows what happens when ngram models are built over

words instead of over letters. (5) is an output from a bigram word level

model.

(5) THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH

WRITER THAT THE CHARACTER OF THIS POINT IS

THEREFORE ...

Because a single word can contain many letters, (5) illustrates how a

hierarchy of Markov models can be used to capture regularities at multiple

time scales. The approach is not successful as an implementation of

syntactic patterns such as wh-movement, because the model cannot

generalize across cases in which the material intervening between the

wh-word and its trace varies in length and complexity, a central point

of Chomsky (1957). From the point of view of sound structure, however,

the n-gram model looks better. There is no problem in reading out (5) as a

phonologically well-formed sequence of intonation phrases as in (6).

(6) THE HEAD AND IN FRONTAL ATTACK % ON AN ENGLISH

WRITER % THAT THE CHARACTER OF THIS POINT % ...

Although metrical phonology does posit hierarchical structures, it has

been argued that this involves a limited number of levels, with the CV

skeleton and/or moraic structure at the bottom, and the intonation phrase

at the top. Accordingly, it is claimed to lack recursion (Nespor & Vogel

1986; Beckman & Pierrehumbert 1986). Insofar as this claim is correct, it
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entails that metrical trees can be handled using multi-level Markov models.

Ostendorf & Ross (1997) use this approach in an algorithm for recognizing

intonation patterns in recordings of speech. To include word-level metrical

structure in building a probabilistic grammar to predict well-formedness

judgements, Coleman & Pierrehumbert (1997) simply compile the metrical

position into the set of states for a single-level grammar. However,

stochastic context-free grammars also support learning, generation, and

parsing (Chappelier, Rajman et al. 1998). So recursive prosodic grammars

would not be fatal to the enterprise of linking production to learning and

perception, though in practice, they have been little used in statistical

models of phonological acquisition.

30.4 Relating phonology to phonetics and

to morphophonology

Phonology can be rather well approximated as a discrete system. Phonetics

characterizes physical speech events (whether articulatory gestures or

acoustic patterns). Thus, phonological elements categorize a physical space

with a large number of dimensions, in much the same way as colour words

categorize a continuous multi-dimensional world of the visual spectrum. It

is challenging to capture the relationship between such fundamentally

disparate levels of representation (a discrete set of coding symbols on the

one hand, and a quantitative representation of physical reality on the other

hand), and the high dimensionality of the phonetic space creates its own set

of challenges. However, a positive feature of the situation is that the
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phonetic parameters are physically observable, and the scientific theory of

the relationship between articulation and acoustics is very advanced.

After recordings of conversational speech became widely available in the

1960s and 1970s, fine phonetic transcriptions of these recordings launched

two important lines of research in probabilistic phonology. The VARBRUL

framework developed in Sankoff & Labov (1979) formalized the relationship

of phonemes to phonetic realizations as rewrite rules with associated

probabilities. For example, the probability distribution for American

English /t/ (in dimensions that include the closure, the vocal fold

configuration, and the formant transitions) is coarse-grained as the set of

alternatives {[th], [t], [tP], [P], [R]}. The probabilities for each of these

variants, as a function of social characteristics such as gender, age, and

class, can be inferred from a labelled corpus. According to usage-based

phonology (Bybee 2001; Kapatsinski 2018), phonology is a self-organizing

system in which ongoing experience of language continually updates the

mental representations, which are characterized as richly detailed memories

organized into an associative network. Frequency effects are an intrinsic

consequence of this learning mechanism. The original works in usage-based

phonology, notably Hooper (1976), shared with the VARBRUL framework

the use of phonetic transcription. A major empirical finding was strong

correlations between word frequencies and the probabilities of lenited

allophonic variants.

Variability in American English /t/ lends itself very well to the

VARBRUL approach, because the different variants correspond to distinct

clusters in the acoustic-phonetic space. However, for other cases studied in
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sociophonetics and usage-based phonology, the variation is systematic,

distinct clusters are not apparent to us. Vowel formants, fundamental

frequency contours, and rhythmic patterns can all vary in ways that display

regular relationships to factors such as prosodic position, gender, or dialect,

but without the variation being easily transcribed in fine phonetic notation.

For example, Hay, Pierrehumbert, Walker, & LaShell (2015) identify effects

of word frequency on vowel formants during a regular sound change in

progress in New Zealand that are extremely subtle – just a few Hertz in size

– yet still systematic and statistically significant. Similarly, Sanchez, Hay, &

Nilson (2015) find that New Zealand vowels have a slightly more Australian

realization in the context of discussions about Australia. Attempting to

transcribe such patterns with a small inventory of symbols would omit

details that are interesting and produced systematically by native speakers.

Of course the inventory could in principle be elaborated to any desired level

of precision, perhaps using 10 or 100 times as many vowel symbols as the

IPA committee would countenance. But if the transcription system is

extremely detailed, it becomes impossible to achieve good reliability across

transcribers. More importantly, the inventory of any transcription system

effectively incorporates assumptions about alternative categorical choices in

the cognitive system. For example, while I normally produce pretty with a

[R], I may categorically decide to use [th] to make myself understood to a

British speaker. In contrast, for some aspects of speech production, it is

more reasonable to assume that the speaker is controlling a continuous

variable such as their precision or level of effort, much as they can control

their precision or level of effort in other physical tasks.
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An alternative theoretical approach does not stop at generating a fine

phonetic transcription, but instead associates phonological categories with

probability distributions over observable physical parameters, such as the

formants that capture vowel quality distinctions. This approach is possible

because of the tremendous advances in speech science in the 1940s through

the 1970s, including the application of linear systems theory to vowel

acoustics (Chiba & Kajiyama 1942; Potter, Kopp, & Green 1947; Fant

1970), van den Berg’s theory of vocal fold vibration (Van den Berg 1958),

and von Bekesy’s work on the mechanisms of the ear, which led to the

Nobel Prize in 1961 (Olson, Duifhuis, & Steele 2012). An early example of

phonological explanation using these tools is adaptive dispersion theory,

which explains some aspects of the typology of vowel systems through an

iterated stochastic model of production and perception (Liljencrants &

Lindblom 1972). This is an example of a usage-based model, because the

mental representation of the vowel system emerges from ongoing experience

with speech.

Key assumptions of adaptive dispersion theory are carried over to

recent work in exemplar theory (Goldinger 1998; Pierrehumbert 2001;

Johnson 2005; Wedel 2012). In perception, the incoming signal is classified

on the basis of its location in the phonetic space by deciding which category

it is most likely to belong to, a statistical problem that mathematical

psychologists had worked out by the early 1960s (Luce, Bush, & Eugene

1963). Learning occurs by remembering experienced examples, which

entails that the cognitive representation of the distribution for a category is

sparsely populated early on, but becomes fleshed out as experiences
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accumulate, including the rare realizations of the category that define the

tails of the distribution. Production is achieved by taking a random sample

from the distribution (Pierrehumbert 2001). This approach can capture

phenomena that are not amenable to analysis using VARBRUL. For

example, Todd, Pierrehumbert, & Hay (2019) shows how an exemplar

model using continuous phonetic representations can capture the very small

but significant subphonemic effects relating to word frequency documented

in Hay, Pierrehumbert, Walker, & LaShell (2015). However, with

VARBRUL having been used longer and on more varied empirical data,

exemplar theory is not yet associated with as great a range of sociophonetic

observations.

The relationship between the phonological level and the

morphophonological level presents the opposite set of challenges: the

morphophonological level is assumed to be discrete, but it is not directly

observable. If the underlying forms of the morphemes are provided (by

expert linguists), then it is not too difficult to generate outcomes that

include variable outcomes using variable rules. Research in Optimality

Theory also showed how variable outcomes can be generated using variably

ranked constraints, where an individual outcome is generated by random

sampling from the ranking distributions (Anttila & Cho 1998; Boersma &

Hayes 2001; see further van Oostendorp, this volume). Inferring the

underlying representations if they are not known is a difficult optimization

problem in languages with rich morphology. The explosive combinatorics

involved in comparing each word to many other words, and the fact that

computer algorithms have much worse access to semantic similarity than
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people do, already mean that finding the best way to cut up complex words

in a concatenative morphological system is far from trivial.

A turning point in the field was based on the observation, going back

to Zipf (1936, 1949) that frequent concepts tend to be expressed using

shorter forms than rare concepts. This observation suggests that human

languages have a tendency towards using optimal coding, that is, towards

expressing meanings in the shortest possible manner, consistent with

getting messages across accurately. If we view the lexicon as codebook, we

can now ask how to find the most succinct codebook that still covers the

whole language. Should we include entries for meadowlark, skylark, and

woodlark, spelled out as letters or phonemes? We might obtain shorter

representations by just pointing to the forms meadow, sky, wood, lark, if

these are needed in any case. However, merganser clearly needs to be

spelled out, because the word does not contain any subparts that are

productively used in other combinations. More generally, a succinct

codebook for the lexicon can be found by identifying substrings

(approximately corresponding to morphemes) that reoccur in more different

words than would be predicted from their phonological form alone. This

assumption, in combination with the basic grammatical assumption that

affixes depend on stems, has led to surprisingly successful algorithms for

segmentation of concatenative morphology (Goldsmith 2001; Creutz &

Lagus 2002).

Additional challenges arise when attempting to infer morphological

relationships when phonological alternations are involved. This problem can

be conceptualized as the problem of optimally estimating the probabilities
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of morphophonological rules (which convert one form to another) or of

morphophonological relationships (in which morphologically related word

forms generally match but have some points of mismatch). This inference

problem is quite challenging, because not just the probabilities of the rules,

but also the rules themselves, need to be inferred. Languages differ greatly

in their rule inventories and many rules are not phonetically

natural (Anderson 1981). A pioneering effort is Skousen (1989), which

induces general rules from specific rules by iteratively collapsing rules as

long as the statistical reliability is not compromised. Subsequent related

efforts include Mikheev (1997); Albright & Hayes (2003); Pierrehumbert

(2006). The problem continues to be actively pursued not only in

linguistics, but also in statistical natural language processing in the context

of efforts to engineer language processing systems for heavily inflected

languages (Narasimhan, Barzilay, & Jaakkola 2015; Cotterell et al. 2016).

30.5 Correlations of probabilities with

linguistic behaviour

A large number of experimental studies in psycholinguistics and laboratory

phonology in the 1990s and 2000s found correlations between phonological

probabilities as estimated from corpora, and various kinds of linguistic

behaviours. Some of these studies had the goal of overturning theories that

lacked probabilities, such as Chomsky & Halle (1968) and Prince &

Smolensky (2008), while others had the goal of modelling language

acquisition, speech production, or speech perception. Here, I review some of
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the highlights of this literature.

A straightforward consequence of including probabilistic information in

the phonological grammar is that combinations of rare elements or

sequences are predicted to be extremely rare. In a Markov model, this

prediction follows because each transition is statistically independent from

the one before, and the joint probability of two independent events is the

product of their individual probabilities. Any sequence that is generated by

a Markov process can be assigned a probabilistic score simply by

multiplying the probabilities of the transitions. (The score is normally

calculated in the log domain by summing the log probabilities.) Because

probabilities are by definition less than or equal to 1.0, and probabilities of

1.0 occur only in very exceptional cases, the product is almost always a

smaller number than each individual probability. Models based on

context-free grammars make basically the same prediction because the rules

for expanding non-terminal nodes in the tree are taken to be statistically

independent. Indeed, the predicted probability of a combination can be so

low that it is expected to occur less than once in a corpus of realistic size.

In Pierrehumbert (1994), a study of triconsonantal medial clusters in

monomorphemic words of English (as in words like palfrey or velcro), this

simple observation effectively explains the vast majority of missing

triconsonantal clusters in a large on-line dictionary. For example, the

sequence /D.bw/ (a rare syllable coda plus a rare syllable onset) is

predicted to be so rare that it would show up less than once in a large

lexicon of English, and indeed monomorphemic words like /paDbwi/ do not

occur. As already noted in Miller (1957), the same reasoning means that
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the probabilistic score of a pseudoword gets lower and lower as we add more

material. And indeed (setting aside propensities to avoid extremely short

words), the likelihood that a wordform is a real word does decay rapidly

with word length in every language that has been analyzed.

Well-formedness judgements of pseudowords have been shown in many

experimental studies to reflect statistical scores of the forms, as determined

from an analysis of the lexicon together with assumptions about the

phonological grammar. Both the units that accrue probabilities, and the

assumptions about how the scores for the parts contribute to the whole,

differ in different studies. The simplest phonotactic score that is widely

used assumes the words are generated by a bigram model defined on

phonemes (instead of on letters), with scores calculated as described in the

last paragraph. Scores calculated in the same way assuming a trigram

model have also been found to be relevant (Bailey & Hahn 2001; Needle,

Pierrehumbert, & Hay in press). As predicted by Miller (1957), assuming

an n-gram model means that long words comprised of more probable parts

will receive similar scores to short words with less probable parts. This

prediction about the scores is reflected in human ratings. A study of word

length by Frisch, Large, & Pisoni (2000) obtained ratings for pseudowords

of length 2 to 4 syllables, comprised either of frequent, or rare, CV syllables.

Bisyllabic words made of rare syllables were rated about the same as

quadrisyllabic words made of frequent syllables. The observation is

replicated in Needle, Pierrehumbert, & Hay (in press), for pseudowords

ranging from 4 to 7 phonemes in length. A further important issue is how

the cognitive system treats unseen sequences. Does the presence of any
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unseen sequence mean that any word containing it is completely

impossible? Or does the cognitive system treat unseen sequences as the

limiting case of rare sequences, in effect keeping a corner of the mind open

to novelty? Coleman & Pierrehumbert (1997) finds that frequent sequences

can redeem completely unattested clusters. For example the pseudoword

mrupation, combining the unattested word beginning mr with the common

sequence pation is judged fairly favourably. Thus the second alternative is

the correct one. In mathematical language models, smoothing methods

provide a way to assign nonzero probabilities to previously unseen

sequences (Jurafsky & Martin 2008). Edwards, Beckman, & Munson (2004)

puts forward a different line of evidence for the relevance of empirical

probabilities to the cognitive system. In a production task, they find that

children make more errors in producing less common (though still legal)

phonotactic sequences than in producing common ones.

While these results showed that probabilities are cognitively relevant,

and that probabilistic information combines in a cumulative manner, they

already contain the seed of mismatches between the cognitive system and

probabilities in the strict sense. First, judgements generally correlate with

log probabilities rather than probabilities per se, a point to which we return

in section 30.6. Second, if we allow outputs of a Markov model to have

arbitrary length, the probabilistic scores are not guaranteed to sum up to

1.0. Since probabilities do, by definition, sum up to 1.0, the probabilistic

scores are not strictly speaking probabilities.

In sociophonetics, variable rules have probabilities that are associated

with aspects of the context. Some of these, such as the gender or social
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class of a speaker, are relatively stable over time. Others, such as formality

or addressee, vary on short time scales, and individual speakers use variants

with different probabilities depending on them. While such patterns of

variation in production clearly demonstrate the need for a probabilistic

model, they can in some cases leave considerable ambiguity about what

individual speakers have learned. For example, while it is possible that

people have learned to control the probabilities of hyperarticulated and

reduced allophones based on the communicative situation, it is also possible

that they have simply learned to speak with more effort in formal contexts

and contexts that present communicative difficulties, with hyperarticulated

variants more used as a consequence. This ambiguity in the interpretation

lends importance to other types of evidence about the cognitive status of

probabilistic information in sociophonetics. Recently, studies of

sociophonetic perception have produced illuminating results. Experiments

show that listeners adjust their encoding of speech depending on social

information about the speaker (Johnson 2006; Sumner & Samuel 2009) and

direct or indirect information about the dialectal context (Hay & Drager

2010; Sanchez, Hay, & Nilson 2015). People who are familiar with multiple

dialects are also quite successful in identifying speaker dialects (Clopper &

Pisoni 2004), indicating implicit knowledge of the distributions of these

variants in relation to groups of speakers. These behaviours all indicate

that the probabilities studied in sociophonetics reflect cognitive regularities.

Empirical probabilities are also found to be correlated with

morphological decomposition and morphophonological alternations. In

English, phonotactic constraints on words, in combination with the highly

26



productive use of compounding, mean that many complex words contain

junctures that would be unlikely or impossible in simplex words. For

example, the sequence /pd/ as in topdog, is far more likely across a word

boundary than within a (monomorphemic) word, and indeed can provide a

cue that the word is a compound (Daland & Pierrehumbert 2011). Hay,

Pierrehumbert, & Beckman (2004b) show that this information is used

implicitly in well-formedness judgements; judgements correlate with the

probability of the single best parse. Ernestus & Baayen (2003), Albright &

Hayes (2003), Pierrehumbert (2006), and Zuraw (2010) all find correlations

between the empirical likelihood of alternations, and the rate at which they

are applied when people are asked to produce morphological relatives of

nonce words (so-called wug tests).

30.6 Probability matters vs probability

matching

As Section 30.1 already noted, some probabilistic theories of phonology

claim that people learn the probabilities of different phonological patterns,

and reproduce them in their own outputs. Such theories are referred to as

probability-matching theories. Others only make the much more general

claim that probabilistic information is used in learning and reflected in

adult grammars. These theories are also probabilistic, but the probabilities

of different outputs are not necessarily predicted to be the same as the

probabilities in the input.

The first point of view has a long history in sociolinguistics, where
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probabilistic rules are used to capture variation in allophonic outcomes

across dialects, speakers, and speech registers. The observation that some

of this variation is remarkably persistent from one generation to the next

has led some sociolinguists, notably Labov (1989), to argue that children

learn the probabilities of the input they experience during language

learning, and then reproduce these same probabilities. However,

sociolinguists have never argued that children internalize all of the ambient

probabilities. For language changes in progress, systematic differences in

patterns of variation across generations are much studied. One of the main

unsolved problems in sociolinguistics is to explain why some variation is

relatively stable, while other variation is unstable and is resolved by

changes towards a more regular system.

The claim that people internalize experienced probabilities has had a

resurgence in more recent years with the rise of Bayesian models of learning.

In Bayesian models, people bring a set of prior beliefs to any learning

situation. In the case of phonology, these prior beliefs are expressed as

probabilities associated with phonological descriptors. These descriptors are

formal characterizations of sound patterns, using the ontology of the

selected theory, which are either correct (true) or incorrect (false) for any

individual specific example in a language. For example, one might

hypothesize that people are born assuming that all words begin in

consonants; or an adult second language learner might make this

assumption, based on their implicit knowledge of their first language. This

hypothesis can be expressed as P (C|# ) = 1.0 (read as ’the probability of

a consonant given a word boundary is 1.0’). Accordingly, P (V )|# ) = 0.
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This approach means that a ‘prior’ is a probability (or set of probabilities)

assigned to the initial state of the model before the learner has any

experience.5 In the Bayesian approach, learners then update these

probabilities depending on what examples they experience. As the amount

of experience increases, their mental representations of the probabilities

converge to the experienced probabilities. English does have words

beginning in vowels, so in this hypothetical example, adult mental

representations have P (C|# ) < 1.0 and P (V |# ) > 0.

In learning situations with high levels of exposure, the prior reveals

itself the most at the early stages in the learning process. By the time the

final state (the mature system of a fluent speaker) is reached, the amount of

experience is so great that the initial state has little remaining effect. The

output from a mature learner is thus predicted to display the same pattern

of statistical variability as the input they experienced. Examples of recent

Bayesian models of phonological learning include Shi, Griffiths, Feldman, &

Sanborn (2010); Daland & Pierrehumbert (2011); Wilson & Davidson

(2013); Moulin-Frier, Diard, Schwartz, & Bessière (2015). To the extent

that probability-matching is observed, that is an argument that Bayesian

models do a good job of capturing the critical features of the language

acquisition process.

The reviews in Hayes & Londe (2006) and Hayes, Siptár, Zuraw, &

5 Some formalizations use instead the related assumption that the initial state of the

learner is instead a set of frequencies of phonological descriptors, which are accordingly

counts of different types rather than probabilities of different types. However this does

not affect the point being made here.
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Londe (2009) claim that adult language learning is generally

probability-matching (a claim that does not necessarily extend to language

learning by children; see Kam & Newport 2009). Unfortunately, many of

the earlier papers that are cited argue for the importance of probabilities,

but not for probability-matching per se. I now summarize some of the

discrepancies, because this sort of confusion appears to be widespread. To

show that learning is probability-matching, it is necessary to show that the

statistical patterns in the output of individual learners match those in the

input, which are assumed to be the same as those in the ambient language.

One issue is that many studies only report data that has been pooled

across participants. As pointed out in Estes (1956), pooled data can give a

spurious appearance of probability-matching in cases where different

participants learn categorically different systems. As an extreme example, if

a variant occurs half the time, and some people always use it, while others

never do, the pooled data will have the variant half the time. We may

conclude that the variability affected the likelihood that a pattern would be

learned, but not that individual learners acquired a value of P = 0.5.

Secondly, a study in which the dependent variable (the output) is

something other than the statistical patterns in the learner’s linguistic

productions does not by definition demonstrate probability-matching. For

example, the output measures for Edwards, Beckman, & Munson (2004) are

durations (in units of time) and error rates. Error rates are of course

probabilities, but they are not probabilities of variants per se; instead they

are probabilities describing the relationship between the intended variant

and the actual variant. Pierrehumbert (1994) correlates the likelihoods of
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clusters with the rank of the type frequency in the lexicon; a frequency rank

is not the same thing as a probability. Bailey & Hahn (2001), Frisch, Large,

& Pisoni (2000), and Hay, Pierrehumbert, & Beckman (2004b) all report

judgements of word acceptability or typicality on a Likert scale (a scale

with some number of steps, such as 5, 6 or, 7). These papers all conclude

that phonology is probabilistic, but they should not be interpreted as

demonstrating that phonological learning is probability-matching.

A further layer of complexity is added because in most experimental

studies on the behavioural consequences of phonological probabilities, the

independent variable for the statistical analysis is log scaled. Probabilisitic

scores for n-gram models, as described above, are generally computed by

summing log probabilities as a computational convenience. In the idealized

case where people’s behaviour is perfectly probability-matching, it does not

matter whether both the input and the output are on a linear or a log

probability scale. However, log scaling does matter when we probe the

internal state of the system by looking at other dependent variables. The

relationship between log frequency (as an input) and various indicative

outputs (such as judgements on a Likert scale) is pretty well approximated

by a straight line. This is why it is appropriate, for example, to report the

correlation from a linear regression. However, a relationship that appears

linear when log scaling of the independent variable is used would not be

linear without the log scaling. We illustrate this with a simple example of

English phonotactics. In a monomorphemic word list of English (Hay,

Pierrehumbert, & Beckman 2004b), there are 16 words beginning in /Sr/, 46

in /gl/, and 132 in /tr/. Thus, /#tr/ is about three times as frequent as
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/#gl/, which is about three times as frequent as /#Sr/. If all other

phonotactic factors are held equal in an experiment on rating the

well-formedness of pseudowords, we expect the difference in ratings between

/#gl/ words and the /#tr/ words to be about the same as the difference

between /#Sr/ words and /#gl/ words. For example, if /#Sr/ words have

an average rating of 1.0, and /#tr/ words have an average rating of 7.0,

then we expect the /#gl/ words to fall half way in between at ∼4.0. That’s

because addition on a log scale corresponds to multiplication on a linear

scale, and the multiplier for both relations is ∼3. If the mental

representations used a linear scale rather than a log scale, the predicted

rating for the /#gl/ words is lower, at around 2.6. On a linear scale, 46 is

much closer to 16 than to 132; 132− 46 = 86, whereas 46− 16 = 30. The

appropriateness of log frequency scaling for the analysis of well-formedness

ratings and many other types of behavioural data indicates that cognitive

representations become saturated with high levels of exposure. The impact

of 100 new instances of a pattern, for example, differs greatly depending on

whether the learner has previously seen just one instance, or a thousand

instances, of the same pattern. The same quantitative argument also

becomes important for evaluating the extent of probability-matching in

real-world data, where there is always some noise in the data and hence

some variability around the hypothesized pattern. The relative weight of

different observations in any model fitting procedure depends a lot on

whether linear or log scaling of the probabilities is used, and in general log

scaling appears to be more appropriate.

Log scaling is not the only way to capture nonlinearity in the
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relationship between the input and the mental representations. In

particular, connectionist models of language (which also appear in the

literature as neural network models or Parallel Distributed Processing

models) also capture such non-linearities using a variety of different

equations (Feldman & Ballard 1982; Smolensky 1990; Plaut, McClelland,

Seidenberg, & Patterson 1996; Goldberg 2016). However, a review of such

models exceeds the scope of this chapter.

In this context, it is interesting to inquire whether people’s mental

representations or productions systematically also deviate from

probability-matching in other ways. This possibility is already

foreshadowed in Shannon’s work on n-gram models. As discussed above,

the model can only learn local regularities within a fixed-size window.

Regularities that critically involve a larger window cannot be learned by an

n-gram model using a smaller window, and will not be reproduced in the

outputs. In fact, any probabilistic grammar incorporates constraints on

what can be learned, just as any other type of formal grammar does.

Moreton (2008) extends this observation with his discussion of cases in

which cognitive biases modulate, rather than strictly determine, what can

be learned. That is, controlling for the amount of statistical evidence, some

kinds of generalizations are more easily learned than others, though the

others might be partially learned or learned with more experience. Becker,

Ketrez, & Nevins (2011) and Dawdy-Hesterberg (2014) document cases in

Turkish and Arabic, respectively, in which strong statistical patterns

involving vowels do not appear to be productively applied, in contrast to

prior results for similar patterns involving consonants. These suggest that
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the phonological encoding of consonants and vowels may differ, possibly

because consonants are perceived more reliably in terms of discrete

categories than vowels are (Pisoni 1975). Computational models of

language variation and change point to the existence of cognitive biases

towards regularity and structure, as without such biases, language systems

are predicted to degenerate structurally over time. These entail that

speakers do not reproduce all of the variability that they encounter, but

instead develop phonological units that are distinct and discriminable.

Bybee (2001), Pierrehumbert (2001), Wedel (2012), Kapatsinski (2018), and

Todd, Pierrehumbert, & Hay (2019) all make proposals about how these

biases figure in the perception and production systems. Kapatsinski (2018)

reviews further cognitive factors that cause deviations from

probability-matching behaviour, including task demands and patterns of

attention. Finally, social factors shape how people attend to, encode, and

remember spoken words; depending on these factors, infrequent variants

may be either highlighted, or ignored, in forming long-term mental

representations (Sumner, Kim, King, & McGowan 2014; Clopper, Tamati,

& Pierrehumbert 2016; Todd, Pierrehumbert, & Hay 2019).

30.7 Conclusion

Probabilistic phonology has antecedents in the work of Pān. ini, and the

classic distinction between accidental and systematic gaps in the lexicon is

implicitly probabilistic. Mathematically explicit theories were launched

with Shannon’s work on information theory and Markov processes in the
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1940s. Other important foundations include mathematical models of

classification (Luce, Bush, & Eugene 1963) and the advances in acoustic

and articulatory phonetics that made it possible to relate abstract

phonological categories to observable physical parameters (Chiba &

Kajiyama 1942; Fant 1970; Van den Berg 1958).

The availability of abundant recordings of conversational speech

beginning in the 1970s led to two major lines of research. In sociophonetics,

variable rules were developed to model effects of dialect, gender, class, and

other social variables on allophonic and morphophonological

variation (Sankoff & Labov 1979). Assuming an architecture in which

detailed traces of linguistic experience are retained in memory, Liljencrants

& Lindblom (1972) proposed a self-organizing model for the typology of

vowel inventories, and Bybee and colleagues documented the importance of

word frequencies in allophonic variation and diachronic phonology (Hooper

1976; Bybee 2001).

During the next decades, probabilistic phonology took on some of the

major claims of mainstream generative phonology. While Chomsky & Halle

(1968) and Prince & Smolensky (2008) both claimed that phonology lacks

gradient and cumulative effects, systematic experiments on well-formedness

judgements and other linguistic behaviours showed that such effects exist.

They also showed that these effects are highly correlated with the empirical

frequencies of phonological outcomes, and with the likelihoods of complex

outcomes as predicted from their parts. These studies led to the conclusion

that probabilities are reflected in some manner in the mental representation

of phonology. The development of autosegmental-metrical phonology
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provided the technical foundation for associating probabilities not merely

with phonemes or allophones, but also with larger phonological units.

This era also saw significant progress on modelling the relationships

amongst levels of representation in the sound structure of language.

Goldsmith (2001) and Creutz & Lagus (2002) developed methods for

inducing morphological decompositions from a lexicon. Skousen (1989),

Mikheev (1997), and Albright & Hayes (2003) developed ways to

automatically learn alternations. Models of the relationship between

phonology and phonetics moved from discrete models (using fine phonetic

transcriptions) to models that generate probability distributions over

continuous phonetic parameters (Pierrehumbert 2001; Johnson 2005; Wedel

2012; Moulin-Frier, Diard, Schwartz, & Bessière 2015). Bayesian models of

phonology provide a powerful and general account of how language learners

might acquire patterns of variation from linguistic experience. However,

they also predict that with high levels of experience, the learner’s output

will match the statistics of their input. This prediction has been evaluated

in recent experimental studies. It turns out that the cognitive system

distorts empirical patterns in some ways, due to cognitive biases,

propensities for regularity and structure, and social influences on attention

and memory. Nonetheless, it remains clear that probabilistic information is

important in phonology.
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