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Abstract

The phenomenon of anticipatory coarticulation provides a ba-

sis for the observed asynchrony between the acoustic and vi-

sual onsets of phones in certain linguistic contexts. This type of

asynchrony is typically not explicitly modeled in audio-visual

speech models. In this work, we study within-word audio-

visual asynchrony using manual labels of words in which theory

suggests that audio-visual asynchrony should occur, and show

that these hand labels confirm the theory. We then introduce a

new statistical model of audio-visual speech, the asynchrony-

dependent transition (ADT) model. This model allows asyn-

chrony between audio and video states within word boundaries,

where the audio and video state transitions depend not only on

the state of that modality, but also on the instantaneous asyn-

chrony. The ADT model outperforms a baseline synchronous

model in mimicking the hand labels in a forced alignment task,

and its behavior as parameters are changed conforms to our ex-

pectations about anticipatory coarticulation. The same model

could be used for speech recognition, although here we consider

it only for the task of forced alignment for linguistic analysis.

Index Terms: audio-visual speech recognition, audio-visual

asynchrony, anticipatory coarticulation, dynamic Bayesian net-

works

1. Introduction

Audio-visual anticipatory asynchrony is a naturally occurring

linguistic phenomenon in which the visible gestures (mainly the

lip gesture) for a speech segment occur in advance of other ar-

ticulatory components of the segment, so that the visible ges-

tures – the viseme – are seen before the corresponding phone is

heard. A common example of this is the “pre-rounding” seen in

the word “school”. The lips begin to round for the /uw/ sound

while the /k/ (or even /s/) is still being produced. This phe-

nomenon in known as “anticipatory coarticulation”.

Preservatory coarticulation is a similar effect, but instead

of one gesture beginning in advance, a gesture continues af-

ter. Though anticipatory coarticulation is more pervasive in En-

glish, the extent and directionality of coarticulation patterns dif-

fer across languages [1, 2].

Anticipatory coarticulation has been studied since at least

the 1930s [3]. In 1966, Henke proposed a computer model

of the articulation of English stop + vowel with a novel “look-

ahead” mechanism for anticipatory coarticulation [4].

In the speech recognition literature, Bregler and Konig

showed in [5] that, on average, acoustic features were maxi-

mally correlated with visual features 120 ms in the past. This

was also reported in psychological experiments by Benoit [6].

In the area of audio-visual speech biometrics, [7] cites these

asynchrony effects as one of the major open problems.

command color* preposition letter* digit* adverb

bin blue at A-Z 1-9, zero again

lay green by excluding W now

place red in please

set white with soon

Table 1: Vocabulary of GRID Corpus

Currently, a typical approach to modeling asynchrony in

audio-visual speech is the coupled HMM (CHMM) [8], in

which state transitions in each modality depend on the state

of the other modality. In this approach, asynchrony is typi-

cally allowed only within the boundaries of each phone/viseme,

whereas observed asynchrony often crosses multiple phone

boundaries. In contrast, the asynchronous dynamic Bayesian

network model of [9] allows asynchrony across multiple

phones/visemes within a word, but does not account for the

asymmetry that is typical to audio-visual asynchrony. Here

we develop a model of asynchrony that both spans multiple

phones/visemes and allows for explicit modeling of anticipa-

tory coarticulation.

To investigate anticipatory coarticulation, we collected

manual labels of phone and viseme onsets in words that are

likely to exhibit anticipatory coarticulation. To our knowledge,

this kind of study has not been done before. We also develop an

audio-visual speech model that can account for both anticipa-

tory and preservatory coarticulation. This model should be able

to handle asynchrony in a way that is more psycholinguistically

accurate than previous work.

2. Corpus and Utterance Selection

This work uses the freely available GRID Corpus [10], which

contains 34 subjects each speaking 1000 utterances in a studio

environment. Table 1 enumerates the corpus vocabulary, which

contains many opportunities for anticipatory coarticulation both

within and across words. Eleven types of within-word phenom-

ena were selected for analysis in seventy utterances over ten

speakers, yielding 166 instances of within-word coarticulation.

The selected instances, which all involve lip rounding or protru-

sion gestures, were:

• /uw/ in “blue”, “two”, “soon”, “q”, and “u”

• /r/ in “zero”, “three”, “four”, and “r”

• /w/ in “now”

• /ch/ in “h”

3. Human Labeling of Anticipatory
Coarticulation

Four undergraduate linguistics students who had completed in-

troductory linguistics classes were recruited to hand label the



Figure 1: AVDDisplay program created to facilitate easier hand

labeling of audio and video onsets.

audio and video onsets of the selected phones/visemes. Label-

ers were instructed only to “Please label the beginning of the

X gesture” (where X is one of the phones above) with no addi-

tional instruction, in order to prevent biased labeling. No def-

inition of “beginning” was provided. While this undoubtedly

added extra variability to the hand labels, it is a less biased re-

sult from which we can draw stronger generalizations. To aid

in the hand labeling task, we developed an audio-visual data

display tool (AVDDisplay). A screenshot is shown in Figure 1

3.1. Definition of Asynchrony

The video and audio are sampled at different rates and, thus,

a convention must be established to define “asynchrony”. The

video of the GRID Corpus is sampled at a rate of 25 fps, or one

frame every 40ms, while the audio is sampled at a much higher

rate. In this work, we consider an audio sample to “belong” to

a video sample if the audio sample time is within±20ms of the

video sample. In this scheme, each video sample represents the

audio samples that precede and succeed it by 20ms.

3.2. Results and Analysis

Upon initial analysis of the results, we noticed that the inter-

labeler range of markings for certain words in certain utterances

Median L1 L2 L3 L4

Avg. Audio Diff. 16.59 -11.16 8.96 -2.50

Avg. Abs. Aud. Diff. 24.63 16.40 17.02 12.70

Avg. Video Diff. 19.78 10.02 -7.81 -15.44

Avg. Abs. Vid. Diff. 31.63 31.55 25.33 22.77

# Early Vid. 35 30 67 13 14

# Early Aud. 13 10 24 36 28

# Synched 72 80 29 71 78

Table 2: Summary statistics for the four labelers L1–L4 and

their median excluding labels with low confidence. Posi-

tive/negative values signify that the mark is before/after the me-

dian.

could be fairly large, on the order of 150ms or more. We inter-

pret this as indicative of a particularly difficult word to label

and use confidence filtering to exclude such instances. To do

so, the ranges of the audio and video labels of all instances

of a word were each taken as a sample set and a 99% confi-

dence interval around the mean was calculated. Any word in-

stance for which either modality’s range was above the upper

bound of that modality’s confidence interval was deemed to be

of “low confidence” and excluded from further analysis. Even

with this filtering, the audio and video ranges averaged approx-

imately 45ms and 75ms with standard deviations of approxi-

mately 40ms and 49ms, respectively.

Final markings were derived from the hand labeled data

by taking the median of each marking. These median labels

yield 35 instances of early video onsets (defined as the video

marking occuring more than 20ms before the audio marking),

13 instances of early audio onsets (the audio marking occurred

at least 20ms before the video marking), and 72 instances of

synchronous onsets (the audio marking was within 20ms of the

video marking). Table 2 reports these values as well as the asyn-

chrony breakdown for each labeler and some statistics pertain-

ing to each labeler’s performance relative to the median.

The average difference between each labeler’s markings

and the median reflects the data shown in the labeler’s asyn-

chrony breakdown. For instance, labeler 2 marked early video

onsets much more often than the median, and this is reflected

by the average audio difference being negative (later than the

median) and the average video difference being positive (ear-

lier than the median). Averages of absolute differences are also

provided in Table 2.

The median markings of the labelers, shown in Table 2,

confirm the expectation that video onsets should precede audio

onsets more often than the reverse in the chosen words. While

the large number of synchronous onsets was not expected, this

could be due to the coarseness of the video sampling, which

means that only asynchrony greater than 20ms is recognized.

4. Machine Labeling of Anticipatory
Coarticulation

To capture the anticipatory coarticulation phenomenon, an

audio-visual speech modeling system must be able to allow

asynchrony across phone/viseme boundaries. One possible way

is to enforce synchrony at word boundaries while letting the au-

dio and visual stream models evolve without constraint within

each word. This does not make linguistic sense and, indeed, per-

forms poorly in experiments. To effectively model anticipatory

coarticulation, a model must enforce some kind of synchrony

constraints.

Our new model is based on the word-synchronous dynamic

Bayesian network used in our previous work [11] with the ad-



asynchrony models AM AM AM

asynchrony enforcement AE AE AE

audio state index ASI ASI ASI

audio state transition AST AST AST

audio state A A A

video state index VSI VSI VSI

video state transition VST VST VST

video state V V V

audio observation AO AO AO

video observation VO VO VO

Figure 2: Word-synchronous ADT model for train-

ing/alignment. Diagram is simplified for clarity and is

conditioned on word-level variables that are not shown.

dition of a synchrony control mechanism based on [9]. This

model also takes inspiration from CHMMs [8] in that it allows

state transitions to depend on variables other than just the cur-

rent modality’s state. In our case, however, the dependence is

on the instantaneous asynchrony rather than the state itself.

4.1. Model Description

Starting with a word-synchronous dynamic Bayesian network

model based on our previous work [11], we add an extended

version of the asynchrony constraint system of [9]. In [9],

the amount of asynchrony is defined as the absolute value of

the difference between the state indices of the streams, mea-

sured relative to the last synchrony boundary (the beginning of

the word). Here we drop the absolute value, which increases

the number of parameters in the model but allows us to more

correctly model the difference between audio lead and audio

lag. This asynchrony model is learned during training. In a

CHMM, a modality’s state transition probabilities depend on its

state as well as the state of the other modality. In our model,

the state transition probabilites depend on the modality’s state

and the amount of instantaneous asynchrony. We hypothesize

that when the modalities are asynchronous, they will tend back

to synchrony, so the state transition probabilities should be dif-

ferent during asynchrony than during synchrony. We denote

the system with asynchrony-dependent transitions as the “ADT”

model. Aside from audio-visual stream weights, there are three

main parameters of this model: the maximum number of states

of audio lag, the maximum nubmer of states of video lag, and

the weighting of the asynchrony model.

Figure 2 shows our ADT models as a dynamic Bayesian

network. For clarity, state and phone/viseme level variables

have been collapsed into single nodes on the graph. Also, some

common elements, such as pronunciation variants and stream

weighting, are not shown. Blue nodes and edges represent the

audio modality, while red nodes and edges represent the video.

The grey nodes and edges denote the asynchrony model and its

links to the audio and visual modalities. Nodes with no border

are deterministic and hidden, while nodes with a circular bor-

der are deterministic and observed. Dashed rectangle borders

denote hidden, stochastic nodes and dashed circular borders de-

note observed, stochastic nodes. The observed audio and video

input nodes have Gaussian mixture distributions conditioned on
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A
Lag

V
Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video

0 43.50 49.00 43.50 44.56 43.50 44.56 43.50 41.22

1 43.50 53.44 43.50 46.78 43.50 44.56 43.50 41.22

2 43.50 52.33 43.50 49.00 43.50 45.67 43.50 43.44

3 42.39 55.67 43.50 49.00 43.50 45.67 43.50 42.33

Table 3: Average absolute audio and video differences between

median hand labels and ADT system labels, for instances where

hand labels indicate early audio onsets. Smaller numbers imply

better performance. Cell (0,0) is the baseline system.
!
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A
Lag

V
Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video

0 33.97 50.13 32.69 55.27 33.11 61.56 33.77 65.56

1 33.11 43.56 33.97 49.27 33.20 60.41 33.43 54.41

2 33.40 42.99 33.34 48.70 32.86 53.27 32.86 54.41

3 33.11 42.99 33.63 48.70 34.26 54.41 34.00 54.70

Table 4: Average absolute audio and video differences between

median hand labels and ADT system labels, for instances where

hand labels indicate early video onsets. Smaller numbers imply

better performance. Cell (0,0) is the baseline system.

their respective state.

4.2. System Training and A/V Features

All systems were trained using the same technique. First, the

audio and visual streams were trained separately. The number

of Gaussians was tuned on a development set, using a mixture

growing and splitting procedure similar to that of [12]. The

single stream models are combined into a multi-stream model

and the combined model is refined by iterating twice through

the same mixture growing and splitting procedure.

Ten speakers from the corpus were used for these exper-

iments. The training set consisted of 70% of each speaker’s

utterances and the alignment set contained 10%. The remain-

ing 20% have been reserved for future use. Training used audio

and visual stream weights of 0.7 and 0.3, respectively, and were

tuned using recognition experiments on the development set.

Audio features are 12 Mel frequency cepstral coefficients

plus energy, with delta and acceleration coefficients appended

for a total of 39 audio features. Video features are the 90

highest-energy DCT coefficients (corresponding to 95% of the

overal energy) of a 60x40 pixel region of interest around the

mouth. These coefficients are mapped to a 30-dimensional

space using PCA and have their delta and acceleration coeffi-

cients appended as well for a final total of 90 visual features.

All models were implemented using the GMTK [13, 14]

software package developed at the Univesity of Washington.

4.3. Forced Alignment Experiments

We use the ADT model to perform forced alignment, in which

the word sequence is known and the recognizer is responsi-

ble for determining the boundaries for all other hidden vari-

ables (words, phones, visemes, audio states, video states, etc.).

Forced alignment tasks are integral to speech recognition train-

ing and database development, and have important roles in sci-

entfic research on speech. Speech recognition systems can be

used as forced aligners to generate transcriptions of recordings.

This method is less laborious than hand labeling, and it is be-

coming widespread in experimental research, now that forced

alignment has become competitive with hand labeling for some

tasks [15].

We compare our forced alignment results to the human la-

belers by looking at the onset boundaries. For each system,
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A
Lag

V
Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video

0 25.65 25.26 25.55 26.74 25.29 28.06 25.06 30.92

1 25.89 28.58 25.24 29.79 25.72 30.65 25.54 29.81

2 25.48 28.58 25.61 30.98 25.61 29.42 25.59 26.42

3 25.92 30.15 25.32 27.89 25.74 29.39 25.59 28.54

Table 5: Average absolute audio and video differences between

median hand labels and ADT system labels, for instances where

hand labels indicate synchronous onsets. Smaller numbers im-

ply better performance. Cell (0,0) is the baseline system.

the audio-visual stream weights were determined by optimizing

recognition performance over a 1000 utterance development set.

The 70 hand labeled utterances come from this development set,

so while the stream weights were not chosen completely inde-

pendent of the labeled utterances, the hand labeled utterances

make up a very small portion of the development set.

Tables 3 through 5 show the average absolute differences

for the audio and visual streams for the ADT system over vari-

ous maximum asynchrony constraints and broken down by the

median label classification of the utterance. The values in the

zero audio/video lag cell of these tables represent a fully syn-

chronous system, a fairly common implementation of an audio-

visual speech system and the baseline model against which we

can compare. Overall, the audio differences are barely affected

by changing the maximum allowed asynchrony, so our analysis

will focus on the absolute video differences.

Table 3 shows the model’s performance for cases where

the median human label indicated an early audio onset. For a

fixed audio lag, as allowed video lag increases, performance im-

proves (absolute differences decrease). This is what we would

expect as increasing video lag gives the audio more opportuni-

ties to precede the video. Conversely, increasing the allowed

audio lag for a given video lag decreases performance, as one

would expect.

The results for the early video onset cases, shown in Ta-

ble 4, are also consistent with our linguistic expectations. For a

fixed video lag, as allowed audio lag increases, performance

tends to improve (absolute differences decrease) until some

threshold. Furthermore, the converse holds as well. Again, this

agrees with our linguistic intuition about anticipatory coarticu-

lation.

The synchronously labeled cases (Table 5) predictably

show the best performance when no asynchrony is allowed, and

no significant patterns exist in the rest of the results.

5. Summary and Future Work

In this work, we have studied the labeling of anticipatory coar-

ticulation in audio-visual speech. We have collected a set of

manual labels of audio and video phone/viseme onsets, and

found that, while the labelers have fairly high variance, their

median behavior agrees with our expectations about antici-

patory coarticulation. We have also developed a statistical

model of audio-visual speech that explicitly accounts for cross-

phone, asymmetric asynchrony between the audio and video

state streams. Forced alignments with this model show the ex-

pected effects of anticipatory coarticulation, given appropriate

limits on the allowed lag in each stream. Considering the labo-

rious nature of the manual labeling task, we are optimistic that

automatic forced alignment with this type of model can help

psycholinguists study audio-visual speech phenomena.

The forced alignment results presented here, while encour-

aging, depend on setting the appropriate maximum audio/video

lag for a given context. This suggests that an asynchrony model

that adapts to linguistic context may be needed to more accu-

rately model the effects of anticipatory coarticulation.

In our ongoing work, we are continuing to study forced and

manual alignments in the presence of different types of audio-

visual asynchrony effects, both for its own sake and for the pur-

pose of improving asynchrony models for audio-visual speech

recognition.
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