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1. Intreduction

Who could dispute. the obvious fact that language as physically implemented is
describable by a continuous dynamical system? Even digital computers, viewed as
physical devices, are continuous dynamical systems. The physics of speech produc-
tion involves continuously deformable viscoelastic elements coupled to continuously
fluctuating fluid flow. As physiological experiments have attempted to ftrack
language into the brain, it has turned out that all available measurements exhibit
continuous variation. This is not surprising, since individual neurons are themselves
complex dynamical systems.

The remarkable thing is that the output of this complicated dynamical system is
characterized by a considerable degree of regularity at the discrete level. Discrete,
or “qualitative”, regularities in language sound structure are the primary objects of
study in phonology. Phonology concerns not only the inventory of elements which
languages manipulate, but also the grammar which specifies how they may be
combined. As the field has progressed, it has showed a constant give-and-take
between claims about the inventory and claims about the grammar. Adjusting the
theory of the inventory can lead to a better characterization of the grammar, and
adjusting the grammar can lead to a better characterization of the inventory. For
example, studies of the phonological behavior of geminates and homorganic clusters
have led both to a revision in the theory of the units (with autosegments displacing
phonemes), and a revision in the principles of combination (Hayes, 1986; McCarthy,
1986; Ito, 1988). Regardless of one’s opinion of the utility of discrete repre-

- sentations, they are an indisputable observed property of the system; although many
mathematically possible dynamical systems do not exhibit grammatical structure,
evolution has not adopted such a system for human communication. Therefore, any
valid phonological theory based on dynamical systems needs to be able to reproduce
these regularities, just as Newtonian dynamics is able to reproduce Kepler’s laws of
planetary motion.

Among schools of thought on this subject, at one extreme is the position that
phonological theory should deal directly with the dynamics, the surface regularity
emerging more or less automatically as a macroscopic property of the system much
as classical bulk thermodynamics emerges from the statistical mechanics of
interacting particles. At the other extreme is the position that the continuous

0095--44T70/90/030465 + 13 $03.00/0 © 1990 Academic Press Limited



466 I. B. Pierrehumbert and R. T. Pierrehumbert

dynamics is so hopelessly far from the deep regularities of language, that it is
pointless to do anything other than deal with the discrete representation directly.
Qur own position is somewhere between the two. We believe there is a great deal of
productive wurk to be done at the interface between continuous dynamics and
discrete phonology. Work in phonology promises to provide insight into the
dynamics, and work in dynamics promises to illuminate the phonetic basis of
phonology, which is broadly apparent but which has proved exasperatingly difficult
to characterize in detail. Given the amount of progress in identifying the phonetic
basis for the segmental inventory (e.g. Stevens, 1989; Wood, 1985), we would
particularly emphasize the need for work on the phonetic basis of the grammar.
However, we also feel that a good deal more precision must be brought to the
discussion of how continuous and discrete representations of the behavior can be
reconciled. Far from being a peripheral issue, the rigorous relation of grammatical
and dynamical descriptions is one of the most central and challenging of current
research issues.

It is certainly useful to be reminded from time to time that non-linear systems
have complex behavior (as in Browman & Goldstein’s position paper and com-
mentary in this issue, 1990a,b), but this is where the hard work begins, not where
it ends. In this commentary, we shall see a bit of where the mathematics leads us
when we attempt to go further, by discussing established means of formally
associating grammars with dynamical systems. These established methods involve
positing two disparate levels of representations, one qualitative and one quantita-
tive, and then identifying a deep relationship between them. The quantitative
representation does not supplant the qualitative one, which in some cases provides
answers to questions which are intractable from the quantitative perspective. We
also examine where established methods fall short of the requirements for
phonological applications, and show where some of the difficulties lie in effecting the
necessary extensions. In the end, we hope to have provided an idea of what a
rigorous dynamically-based theory of phonological regularity might look like, even
though at present most of the key ingredients are missing.

2. Categories and dynamics

There are two parts to the problem of forging a link between a continuous
dynamical system and the discrete representation familiar to linguists. One part is
the derivation of the discrete categories from the continuous signal. These
categories form the inventory of symbols in our formal language. The other part is
to derive from the dynamics a set of rules governing the allowable (“‘well-formed™)
sequences of symbols. This is the grammar of the language. These two parts are
related since it is possible for a continuous system to suggest several different
categorical interpretations, with some serviceable for a rigorous treatment of the
grammar and others not. Therefore work on phonological categories, such as the
quantal theory of speech, needs to be embedded in a grammatical treatment.

Let us consider a simple example, illustrating what we mean. The first order
system

dx
S = — (= x) M
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yields solutions x{f) which tend exponentially toward the variable target xo(2). In
this system one is getting neither the categories nor the grammar from the dynamical
system. All this is incorporated in the externally specified sequence of target
positions xo(r). The general solution to (1) is

¢
x(0)=x (O + [ xwedr (12)

Q
Models like (1) are thus equivalent to a linear filter of the input signal x.(f). The
same comment applies to the articulatory model employed in Browman & Goldstein
(see the two papers in this issue 1990a,b), which leads to a somewhat more
complicated filter. We are not saying that such representations are without merit;
indeed they have a history in the treatment of F, (e.g. Ohman, 1967; Fujisaki et al.,
1979), and Browman & Goldstein have made a substantial contribution by drawing
out their implications for the more complex domain of segmental allophony.
However, they do not fully bridge the gap between dynamics and phonology. “Task
dynamics” as it is most typically carried out to date takes discrete imputs and
produces continuously variable outputs (see e.g. Figure 6 in Saltzman & Munhall,

1989). To quote Saltzman & Munhalk:

Currently these activation patterns are not derived from an underlying implicit
dynamics. Rather, these patterns are specified explicitly “by hand™, or are
derived according to a rule-based synthesis program...(p. 343).

In Browman & Goldstein (1990b), the grammatical information supplied to the
dynamics specifically includes not only the segmental sequence, but also the
prosody. This is the opposite of what is required. Rather than accounting for
phonology on the basis of dynamics, it amounts to a procedure for phonetic
implementation of the phonology. Such studies can make an important contribution
to phonology when they show that the phonetics accounts for variations previously
thought of in terms of low-level phonological rules. The phonology can be simplified
when it sheds the burden of describing regularities which are difficult to treat
grammatically (see Pierrchumbert, 1980, and Pierrehumbert & Beckman, 1988, as
well as Browman & Goldstein’s discussion of reduction). However, the approach
does not do away with phonology because it says nothing about what sequences of
elements are well-formed. Jordan’s recent work on “‘serial dynamics” described in
Saltzman & Munhall (1989) is in a somewhat different category, as it has the
potential for autonomous generation of regularities in the control sequence. In
Section 2 we will have a bit more to say about where this line of work fits into the
general scheme of things.
In contrast to (1), consider the damped non-linear oscillator equation

S x - -1+ E 2

a1~ )~ (L+e) g @
where a is a generalized spring constant.” This equation has three fixed points
x =0, 1. Suppose for the moment that a is time-independant. Then, when a <0,
x =0 is a stable fixed point (“point attractor”) and x = X1 are unstable fixed points
(“point repeilors™). When & >0, the situation is reversed and x = +1 are the pout

L For a <0, the undamped system is prone to finite-time blowup when x becomes larger than 1. The
non-linear damping coefficient helps to suppress this distraction.
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Figure 1. Time sequence for Equation (2} subject to periodic variation of the
control parameter.

attractors of the system. In this case, the categories come out of the dynamics, in the
form of the inventory of fixed points. If the system starts close to x =1 with 2 >0
and a is gradually reduced to a negative value, then x will make a nearly
discontinuous transition to x = 0. However, the grammar governing the possible
sequences of transitions between fixed points still is put in externally, through the
control parameter a(f). Mind, we are not saying that category formation in
phonology will turn out this simply. In fact, models of this sort, involving an
exchange of stability of fixed points, run into serious problems as soon as one
attempts to discuss the transition between states. The difficulty arises because the
system approaches its point attractor exponentially closely during the time the
control parameter @ retains a fixed sign; hence it tends to get “stuck™ in the
corresponding position, and the longer a remains, say positive, the longer it must be
held negative in order to cause a transition to the x = 0 state. This is an undesirable
feature from the linguistic standpoint, as is demonstrated by the following example.
Suppose that a varies in time with the form

a(t) = y cos(wt) ' €}

One would like a periodic variation of the control parameter to lead to an
alternation of states (as in an extended CV alternation such as /babababa.../). An
integration of (2) with y =0.5 and @ =0.05 is shown in Fig. 1. The system does
indeed show an alternation of states for the first few periods, but then it falls into
the x = 0 state and stays there indefinitely. This kind of behavior is typical, in the
sense that one need not choose the parameters very carefully in order to see it.
From this example we learn that the mere presence of bifurcation in a system does
not assure a natural path to the analysis of the dynamics of transitions between
states.

3. Markov partitions and symbolic dynamics

We will now turn to the analysis of systems for which both the categories and the
grammar proceed from the dynamics in a natural way. The symbolic dynamics
formalism provides the clearest instance in the dynamical systems literature of the
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success of such a program. An introduction to symbolic dynamics may be found in
Guckenheimer & Holmes (1983).
The logistic map

xn+1zrxn(1—xn) (4)

provides a good illustration of the application of symbolic dynamics. Analysis of
chaos in this system is often associated with the work of May, who certainly helped
to bring the phenomenon to the attention of biologists and investigators in diverse
other fields. However, quantitative analysis of the chaos and its physical implications
dates back at least to Lorenz (1964), who in turn was building on the work of Ulam
(1960). In our example, we concentrate on the case r =4, for which (4) is a map
from the interval 0 =x =1 to itself, and the orbits (i.e. sequences Xy, Xy,...) are
chaotic.
We divide the interval into three subintervals

a: 0=x =0.1464466094
b: 0.1464466094=x=0.5 {5)
c: 05sx=1

assigning the symbol a to times when x, is in the first interval, and so forth. Note
that the “objects” which are set up by this partition of the phase space are different
from the kind of “objects” conmsidered in the previous example; in addition, they
cannot be viewed as a macroscopic or average property of the system as Browman &
Goldstein propose. When (5) is applied, the system (4) generates a string of
symbols. Can the set of possible output strings be characterized by a grammar
dealing only with the discrete representation? Because of the careful way the
partition (5) has been constructed, the answer is affirmative.

From (4) it follows immediately that the following transitions between adjacent
symbols are possible: a— {a,b},b—¢c, c—{a,b,c}. This defines a finite state
grammar for a language composed of sequences of the three symbols. Trivially, any
output of (4) is a well-formed sequence in this language. It is a more remarkable fact
that, with the partition (5), there is a one-to-one correspondence between symbol
sequences of the language and orbits of (4); for any well formed symbol sequence,
there is a unique initial condition x leading to that sequence (modulo multiplicity
associated with uniform shifts in the sequence). Hence, the finite state grammar
completely characterizes the set of strings that can be output by (4). This convenient
state of affairs will not hold for just any partition we might pick. Partitions with the
desired property are known as Markov partitions.

The inner workings of the Markov partitions are shown in Fig. 2 for the periodic
sequence cabceabe... . Any initial value of x in the range roughly between 0.96 and
1.0 leads to the sequence ca. A somewhat narrower subinterval leads to cabc, and a
narrower one still leads to cabec. Only initial conditions in a very narrow interval
surrounding x =0.98 leads to cabccabe. The interval collapses to a point as we
increase the number of periods over which we require the output to track the target
sequence. This behavior, which is critical to making the rigorous association
between the grammar and the dynamical system, is at the same time somewhat
problematic from a linguistic point of view. It says that the entire future course of
the signal is encapsulated in the initial physical condition. It is as if a regular (though
of course non-linear) relationship were proposed between the details of the first
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Figare 2, Markov partitions for the logistic map.

vowel production and the entire sequence of upcoming segments. Even if the infinite
sequences of symbolic dynamics were truncated or conflated because of error
propagation, the appropriateness of this approach is unclear, because much recent
work on phonology and phonetics has emphasized the locality of access to
phonological structure (cf. Ito, 1988; Pierrehumbert & Beckman, 1988).

The grammatical structure associated with (4) shows that the output of chaotic
systems is not equivalent to random noise. There appears to be some confusion
surrounding this point in the task dynamics literature. For example, Saltzman &

‘Munhall (1989), in discussing strange attractors,® say: “For nonrepetitive and
nonrandom speech sequences, such attractors appear clearly inadequate” (p. 356).
In fact, chaos is special precisely because it is structured but non-periodic. Among
dynamical systems, or even within a given system for various parameter values, the
degree of order can vary continuously in a manner that has been made precise and
quantitative by Crutchfield & Young (1989). Thus, Saltzman & MunhalP’s attempt to
characterize the output of “connectionist models” as fundamentally different from
strange attractors is not particularly meaningful. The models in guestion may form a
particular class of non-linear dynamical system, with perhaps a particular kind of
chaotic output. They are nonetheless amenable to the same kinds of analysis
applied to dynamical systems in general, and present the same difficulties. Whether

21t is worth noting at this point that most of the phenomena generally referred to by this term have not
been proved to be either “‘strange” of even “attractors” in the strict mathematical sense. In two decades
of apphications of chaos in the physical sciences, there do not appear to have been any major problems
caused by glossing over this gap, and so we feel reasonably safe in continuing to use the term loosely, In
any event, it is well established that invariant sets that are not attractors can have a profound influence on
the long term time evolution of the system. The periodic orbits we refer to in our symbolic dynamics
example are all unstable. However, they are dense in the phase space, and so the strange attractor isin a
sense made up of bits and pieces of these orbits of varying lengths.
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their special form makes the analysis of structure in the output easier or harder
remains to be seen. The going is apt to get difficult, as the neural nets under
consideration involve rather large numbers of interacting non-linear elements.
Models of this complexity are proposed with good reason, because the evidence
plainly indicates that phonology is physically implemented as wetware in the brain,
This leads us to the question of how well symbolic dynamics carries over to systems
with large numbers of degrees of freedom.

For maps on the line, such as the logistic map, Markov partitions can be
constructed in a systematic way. Geometrically, this is possible because the
boundaries between partitions are points, which one can slide back and forth on the
line like beads on a wire until the appropriate mathematical conditions are met. For
systems with more than one degree of freedom, the situation is far less satisfactory.
Consider the map

X 2= 20x, y,e7 (6a)
yn+1zg(yn +axn) (6b)

where g(z)=2z for z<2 and g(z)=1 for z>2. This is a two degree-of-freedom
system in the sense that two variables (the initial x and y) suffice to determine the
future coutse of the system. For fixed x, (6b) would lead to a sawtooth oscillation of
y with a period that increases as ax decreases. For fixed y, (6a) would lead to a set
of behaviors similar to the logistic map. For small y, x =0 is a stable fixed point; as
y is increased, sequences of stable periodic orbits become possible and ultimately
chaos sets in. In the coupled system, the control parameter of (6a) is set internally
by the position in the oscillation of y, and the average level of excitation of x in turn
affects the period of the oscillation. In a linguistic context, one might think of (6b)
as an internal clock generating gestural control sequences, with the contro] values
translated into output by articulators modeled (metaphoricaily!) by (6a).

The attractor for this system for = 0.05 is shown in Fig. 3. It is constructed by
taking an initial condition, iterating (6) 11000 times, and plotting the last 10000
points only, so as to give the system time to settle down into its long-term behavior.
The attractor is clearly a geometrically complex entity, made up of a large (actually
uncountable) number of contorted, closely-spaced sheets. Its curious geometry is
why it is called a “strange attractor”, though the term is a misnomer, because such
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Figure 3. Autractor for Equation (6), based on 10 000 iterations.
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things are in fact quite typical. In order to obtain a Markov partition, we would have
to cover the strange attractor by a tiling of the plane which satisfies certain delicate
mathematical conditions concerning which subregions of each region map into each
other region. Rather than varying positions of a small number of points, as for
one-dimensional maps, we must vary the set of curves bounding the regions. We are
not saying this is impossible, but it is clearly of a completely different level of
difficulty from the one-dimensional case. Only a handful of two-dimensional systems
have been successfully analyzed in terms of symbolic dynamics (e.g. Smale, 1963;
Meiss & Ott, 1986; Rom-Kedar, 1990), and these by rather idiosyncratic methods
that do not readily generalize. Leaving aside the question of construction, there are
not even any generally applicable results on the class of two-dimensional systems for
which Markov partitions exist. They are known to exist for a special class of
n-dimensional systems satisfying a technical requirement known as hyperbolicity,
but hyperbolicity is difficult to prove, and in any event many systems of physical
interest are known to be non-hyperbolic, including the logistic map in the parameter
range discnssed above.

This does not mean that the output of such systems is random. We have
constructed a “linguistic corpus” by iterating (6) 100000 times and assigning the
symbol a to x = 1.35, and b to x >1.35. The two symbols appear with roughly equal
frequency in the corpus, but the corpus exhibits striking regularities and preferences
for certain patterns. For example, among all possible sequences of 12 symbols, the
string babaabaaabab is the most common, appearing 589 times. However there are
no occurrences of strings with aaaa as a substring. The more repetitive sequence
baabaabaabaa occurs only 53 times, even though it has none of the unfavored gaa
substrings. The sequence baababaabab, obtained by transposing the first two “feet”
of the most common string, does not occur at all.

The news from dimension-2 is rather dismal, but it gets even worse: without even
considering the high-dimensionality implied by the astronomical numbers of degrees
of freedom of the neurons and mechanical elements involve in producing speech,
simple constructs familiar from control theory suffice to render the system
infinite-dimensional. Consider the delay differential equation

dx
a = =X Ty (7a)

where T is a fixed time lag and the notation on the right-hand side denotes that x is
to be evaluated at time f — T rather than at time ¢. This is an infinite-dimensional
system, because the behavior of x(¢} over the entire interval ~7T =t =0 must be
specified in order to determine the future course of the system. Splitting up time
into discrete chunks of length T, (7a) can be regarded as a map on the space of all
integrable real functions on the interval 0=¢=T7. Function spaces are very
high-dimensional creatures indeed. Of course, (7) is a linear system, and its
continuous family of solutions can be obtained systematically by employing the usual
arsenal of methods applicable to linear systems. The ice gets thinner for non-linear
systems, as the reader can verify by experimenting with the “delayed logistic
equation™

dx
'&E = rx,(l - X(,_T)) (7b)
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It remains to be seen whether some kind of extension of symbolic dynamics
together with 2 suitable underlying dynamical system can account for the observed
phonological regularities. Regardless of the outcome, from symbolic dynamics we
come away with a renewed appreciation of the utility of multiple levels of
representation. Even when the underlying continuous system is known exactly (as in
the logistic map), introducing a discrete level of representation enables one to derive
properties of the system that are difficult to obtain directly on the basis of the
continuous dynamics. For example, the symbolic dynamics of the logistic map
immediately reveals that the system permits infinitely many (unstable) periodic
orbits, which can have arbitrary length. Counting the number of periedic orbits of a
given length can give a characterization of such important properties of the
continuous signal as its entropy. If discrete representations have proved essential for
simple systems where the underlying dynamics is known, they are doubly so for
systems like phonology where the discrete regularity has been established by
observation, but the underlying dynamics is unknown and of uncertain complexity.

4. Beyond finite-state grammars

Markov partitions provide a tidy answer to the problem of rigorously associating a
grammar with a dynamical system, but finding them is a challenging problem. At the
same time, it is not clear that they are the right tool, as they have the undesirable
limitation of yielding only finite-state grammars. Given the conspicuous importance
of hierarchical structure in language, one would like to replace them with something
more powerful. Although there has been some work on the relation of more general
grammars to dynamics (e.g. Crutchfield & Young, 1990), the work is in its infancy,
compared to symbolic dynamics.

Metrical phonology is the branch of phonology dealing with hierarchical structure.
It posits trees, which characterize grouping and relative prominence, and serve to
coordinate the autosegmental tiers. A somewhat oversimplified prosodic tree is
shown in Fig. 4. In this example, the phrase has been expanded as three
phonological words, the words are expanded into feet, and the feet into syllables.
Within each group at each level, one element is singled out as strong. In this
example, we have adopted the position of Selkirk (1980, 1984), according to which
each level in the tree corresponds to a prosodic type with a constellation of

Phrase

mw word
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determinate phonological properties. This position is also adopted in the treatment
of surface representation in Pierrehumbert & Beckman (1988). An important
corollary is that the phonological grammar has no recursion, since it contains no
phrase structure rules with the same symbol on the right and on the left. Apparent
recursion in the lexical phonology is described by principles relating the repre-
sentations for different items to each other, (cf. Halle & Vergnaud, 1988). Thus the
phonological grammar could in principle be expanded into a finite state grammar.
However in practice this would result in an explosion of the state space and a loss of
explanatory power.

The scientific inadequacy of a finite state treatment of phonology can be
appreciated by considering the kinds of phenomena which led to the development of
metrical phonology. Some of these phenomena pose specific problems for an effort
to recast phonological grammar in terms of dynamic systems theory.

Well-formedness constraints which are enforced within groups but not across
group boundaries comprise one major class of evidence for hierarchical structures.
Such constraints are found at all levels. For example, sequences of consonants which
are impossible within a syllable may be possible over a syllable boundary. A major
class of rules within Lexical Phonology applies only within words, not across word
boundaries. One consequence of the English stress rules is that the beginning of a
word can display at most one reduced syllable before the first full syllable is reached,;
disregarding word boundaries, a much greater number of reduced syliables can
precede a full syllable. The intonational grammar rules out the occurrence of pitch
accents after the main stress of a phrase; but pitch accents can follow in a
subsequent phrase. A general consequence is that if two phonological structures are
well-formed, their concatenation is well-formed, modulo any constraints imposed at
higher levels. ,

This generic property of phonology is not easily met for strings generated by
partitions of dynamical systems. In examples such as (5), which are rigorously
describable by finite state grammars, grammatical constraints are defined only over
adjacent terminal symbols and there is no way to define boundaries which prevent
the constraints from being enforced. In the mathematical experiment (6), on the
other hand, the strings aaz and aa individually occur frequently in the corpus, but
their concatenation does not occur at all. Here we have a candidate for a
higher-level constraint, but there is no formal support for a general formulation of
it. To get round this difficulty, one might propose a clock hierarchy. In the course of
its vacillation each clock would generate signals to reset the dynamical system for
the next lower level and destroy information prior to the boundary. Clock
hierarchies have indeed been proposed by researchers in the area of motor control
(e.g. Shaffer, 1981; Vorberg & Hambuch, 1978). However, the empirical arena for
such proposals has been the details of timing as complex actions are carried out,
rather than specification of what action sequences are weil-formed. Dynamical
modeling of the boundary occurrences, the means by which the reset process is
implemented, and the precise nature of the information destroyed at word
boundaries, constitute challenging and interesting topics for research.

A related problem is the transmission of properties up and down the hierarchy.
Inheritance from above is exemplified in Pierrehumbert & Beckman (1988), who
show how pitch range as defined at two levels of phrasing in Japanese is inherited in
the production of individual tones. Inheritance of stress from above constrains which
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syllables can be assigned pitch accents. The dependence of higher levels on lower
levels is illustrated by the very common occurrence of quantity sensitive stress rules.
In languages with a quantity sensitive stress rule, the rule assigning feet to syliable
sequences starts a new foot when it comes to a heavy syllable (a syllable with more
than one element in the thyme), even if the adjacent foot is not of maximal length.
The delicacy of this problem may be illustrated by English, in which a quantity
sensitive stress rule determines the location of the last stress of the word and a
quantity insensitive rule assigns earlier stresses in the word (Hayes, 1980, 1982). In
general, the upwards propagation of information is highly restricted, taking the form
of constraints relating well-formedness of a higher level to structural properties of a
lower level. If arbitrary information could be passed up to a higher node and then
broadcast from there to all subordinate nodes, the restrictive force of the
hierarchical representation would clearly be lost.

Downward inheritance can be incorporated in dynamical models in a straightfor-
ward way. One first assigns a variable or group of variables to each level of the
hierarchy (y for foot-level, x for syllable-level, and so forth). Then, to implement
inheritance one stipulates that the equations governing each level be independent of
variables lower down in the hierarchy, but dependent on variables higher up. In our
foot/syllable example, the system would be of the general form y,.,=G(y,),
%01 = H(¥,,x,). Even if they can be made to yield the correct grammar, such
prescriptions suffer from having the hierarchy hard-wired into the system. They
cannot constrain the set of possible hierarchical relationships, nor shed light on how
hierarchies are acquired by the language learner. Adding some upward inheritance
to this picture is problematic. If it is done in a straightforward way, by allowing the
foot-level dynamical system to be y,..= G(x,y.), ome is back to a general
dynamical system like (6), and the hierarchical structure is lost. Identifying the class
of dependencies that correspond to the limited kind of upward propagation
described in the preceding paragraph is a challenging problem. It suggests the
necessity of some combination of look-ahead schemes, short-term buffering, and
local parallelism.

A third line of evidence for the hierarchical structures of metrical phonology is
based on the abstraction of time that they afford. This abstraction is used to provide
a limited capability for well-formedness to depend on future events. Specifically,
well-formedness can depend on the categorical description of those future events
which are rendered accessible by the hierarchical representation. An obvious
example is the rhythm rule of English, which adjusts the stress location (or possibly
the pitch accent location, see Beckman, DeJong & Edwards, 1988) in anticipation of
an upcoming stronger stress. It is common for word-level stress rules to assign
metrical feet sequentiaily from the end of the word to the beginning, in the sense
that the location of the first strong syllable exhibits a systematic dependence on the
characteristics of the end of the word. The parametric theory of stress rules treats
the direction of assignment of metrical feet as a language specific parameter; the
extent to which time is abstracted in the theory is reflected in the fact that the rest of
the descriptive apparatus is the same regardless of the direction of assignment of
feet (Halle & Vergnaud, 1987). Now, it is broadly apparent that metrical phonology
is founded on the characteristics of rhythmic motor activity, just as distinctive
feature theory is founded on the dimensions of contrast made available by vocal
tract acoustics. However, the way that time is abstracted in metrical rules shows that
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the metrical description is not merely parasitic on the production dynamics. Instead,
metrical phonology points to a cognitive capability to construct descriptions of
dynamics and use them in planning operations; the need for several levels of
representation appears inescapable.

5. Concluding remarks

We have argued in favor of multiple levels of representation in the theory of
language sound structure, embracing continuous dynamics and discrete regularity.
First, discrete phonological regularity, such as the existence of grammars, is a clear
observed property of the phenomenon. Any new approach based on dynamics must
be reconciled with regularity at this level. The connection between the continuous
and discrete (or macroscopically observable) behavior in the linguistic case is more
subtle than the analogous relation in statistical thermodynamics, as the discrete
behavior does not jump out as a macroscopic average of the continuous system
(contrary to the suggestion of Browman & Goldstein, 1990b). Second, we have
shown that grammars can indeed be associated with dynamical systems, but that
there is a big gap between the current development of the mathematics and what
needs to be accomplished for linguistic applications. Required extensions include
methods for treating higher dimensional systems and hierarchical structure. Finally,
for non-linear systems, knowing the undeslying dynamical equation does not provide
the key to its behavior; it just provides a convenient means of simulation, which may
take the place of experiment. In many cases where the dynamics is known exactly,
mathematicians have been forced to invent a discrete level of representation in
order to figure out what is going on. In “discrete linguistics” we skip the dynamical
middleman, and go directly to trying to understand the behavior in terms of discrete
representations obtained from observing the phenomenon itself (language produced
by speakers). If any of these phenomena are ever {0 be accounted for on another
level by a continuous dynamic representation, knowledge of the discrete dynamics
will no doubt prove an essential clue to the reconstruction.
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