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Abstract

When learners are exposed to inconsistent input, do they
reproduce the probabilities in the input (probability match-
ing), or produce some variants disproportionately often
(regularization)? Laboratory results and computational
models of artificial language learning both argue that the
learning mechanism is basically probability matching, with
regularization arising from additional factors. However, these
models were fit to aggregated experimental data, which can
exhibit probability matching even if all individuals regularize.
To assess whether learning can be accurately characterized
as basically probability matching or systematizing at the
individual level, we ran a large-scale experiment. We found
substantial individual variation. The structure of this variation
is not predicted by recent beta-binomial models. We introduce
a new model, the Double Scaling Sigmoid (DSS) model, fit its
parameters on a by-participant basis, and show that it captures
the patterns in the data. Prior expectations in the DSS are
abstract, and do not entirely represent previous experience.
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Theoretical Background
In artificial language learning experiments, individuals learn
a mock language that manipulates some property of interest.
The extent to which learners acquire and generalize the lin-
guistic patterns, and how their generalizations deviate from
the input, shed light on the cognitive factors that shape lan-
guage systems. Previous work has highlighted two important
issues. One is regularization: faced with inconsistent input,
do learners output the same probabilities as in the input? Or
is the output more regular than the input, where one of the
variants occurs disproportionately often? In other words, do
learners have a prior expectation of systematicity in language
systems, and the predisposition to enforce systematicity in
their output?

The other factor is the expectations that learners bring in
the form of substantive biases. Faced with patterns that de-
viate from known patterns, or patterns that are typologically
unusual, how are learners influenced? Do their outputs favor
the more familiar or unmarked patterns? These factors are
potential sources of regularization.

There is a paradox at the heart of the theoretical under-
standing of regularization behavior. At historical time scales,
languages tend to regularize variation. However, laboratory
work has reported that language learning in adults is basically

probability matching (Hudson Kam & Newport 2005). If
learners fundamentally probability match, how do languages
become regular over time? This challenge has been addressed
by proposals in which a probability matching learning mecha-
nism has a twist that can generate regularization at long time
scales. Reali and Griffiths (2009) propose a beta-binomial
Bayesian model in which a slight bias towards systematic-
ity can create structure over multiple generations. Culbertson
and Smolensky (2012) propose a related Bayesian model in
which domain-specific constraints bias learning.

Problematically, these models have only been fit to aggre-
gated data. Aggregated data have the potential to be very mis-
leading about the cognitive mechanisms of individual learn-
ers. Consider input evenly split between variant A and variant
B: P(A) = P(B) = 0.5. If half the learners have P(A) = 1.0 in
their output, and half have P(B) = 1.0, the aggregated data
would appear to show probability matching. However, each
individual learner would have regularized the data. Motivated
by this issue, we carried out a large-scale experiment that
would make it possible to assess individual learning patterns.
The experiment manipulated the consistency and the famil-
iarity/markedness of the input in a four by two design. Here,
we summarize the results of the experiment. These results
are not consistent with any of the probability matching learn-
ing mechanisms proposed in the prior literature. We therefore
present a model that is basically systematizing, and show how
this model can capture the effects of individual cognitive style
and bias for familiar patterns.

The Experimental Results
Schumacher and Pierrehumbert (submitted) taught 632
English-speaking participants an artificial language over
Amazon Mechanical Turk (AMT) using the game-like pro-
tocol in Schumacher, Pierrehumbert, and LaShell (2014).
The language exposed learners to two complementary num-
ber marking systems. The English-like singular/plural (Plu-
ral) has bare singular stems and adds a suffix on the plural
(brick/brick-s). The Welsh-like singulative/collective (Singu-
lative) uses a bare form for the collective and adds a suffix
on the singulative (brics-en/brics). Because the Plural sys-
tem is typologically common and familiar to English speak-
ers, whereas the Singulative system is not, we expected that
learners would be biased in favor of the Plural.

The systems were taught using the same suffix in four con-



sistency conditions. In the 1.00 baseline conditions, the learn-
ers saw only one marking system (Singulative or Plural) that
all nouns used. In the 0.875, 0.75 and 0.625 conditions, the
suffix marked one of the marking systems on a random sub-
set of the thirty-two training items. The same suffix marked
the opposite system on the remaining items. Thus, in the
0.875, 0.75 and 0.625 conditions, learners were exposed to
both marking systems in the training, one that they were fa-
miliar with (Plural) and one that they were not (Singulative).
Training trials were two-alternative forced choice with im-
mediate feedback. Participants advanced towards a goal by
providing correct answers. Items answered incorrectly were
repeated. After training, learners entered the test phase. In the
test phase, learners provided answers to thirty-two novel gen-
eralization items, interspersed with the training items. Trials
were two-alternative forced-choice with no feedback. The
data of central interest are the proportion of responses con-
sistent with the dominant system on the generalization items.
We are particularly interested in the extent to which this pro-
portion differs from the proportion in the input. A probability
matching mechanism predicts no reliable difference. A pos-
itive deviation indicates regularization of the dominant pat-
tern, and a negative deviation means that the participant “ir-
regularized”: or – in the extreme – regularized the minority
pattern. This comparison is shown in Figure 1.
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Figure 1: Violin plots of the difference between the
generalization proportions and input. Values > 0 represent

regularization. Singulative conditions are in red, Plural are in
blue. The dashed line is the 95% confidence interval around
the input proportion. The shaded area is the 95% confidence

interval around a 0.5 generalization rate (chance).

The variability across individuals is substantial. Several
distributions appear bimodal, an outcome that probability
matching does not predict. Because the upper modes are near
ceiling while the lower modes fall within the 95% confidence
interval for random guessing (P = 0.5), it appears that learn-
ers either succeeded or failed in forming a productive gener-
alization. Prior proposals along these lines include Mikheev
(1997), Albright and Hayes (2003) and Yang (2005).

Systematic differences between the Singulative and Plural
conditions indicate that the unexpectedness of the Singulative
affects learning. However, there is not an across-the-board
shift to the Plural. Any model must capture the following:

• In the 1.00 conditions, the Singulative and Plural distribu-
tions are both near ceiling.

• In the 0.875 and 0.75 conditions, more people regularize in
the Plural than in the Singulative.

• The difference between the Singulative and the Plural is
attenuated in the 0.625 conditions, where even in the Plural
many participants exhibit random behavior.

Double Sigmoid Scaling
The predisposition for systematizing rather than reproducing
the input variability indicates a nonlinear input-output rela-
tionship. Many prior efforts to capture systematization have
used a sigmoid function (Ashby & Maddox, 1993; Mandelsh-
tam & Komarova, 2014; Pierrehumbert et al., 2014). The in-
flection point in the middle of the sigmoid, interpretable as
decision threshold, pushes the outputs toward more extreme
probabilities than the input. Figure 1 shows that this behavior
is problematic for explaining the results. In the Singulative
and Plural 0.625 conditions, the majority of participants de-
viated towards 0.5 rather than away from it. This indicates
the existence of a flat region in the middle of the nonlinear
function. For less severe inconsistency, in contrast, there are
tendencies towards regularization. These observations inspire
us to posit a double sigmoid function containing two inflec-
tion points. The challenge is to capture the interaction of the
propensity to regularize with the bias towards a familiar or
unmarked pattern.

The Double Sigmoid Scaling model (DSS) is based on the
logit of the natural logarithm (1). The term p is the input
proportion. We only discuss the simple binary case here.

logit(p) = ln
(

p
1− p

)
(1)

The logit is interpretable as log odds. The inverse of the logit
is the logistic; the composition of the logit with the logistic
is the function is the line y = x, which describes probability
matching (2):

p =
1

1+ e−
(

ln
(

p
1−p

)) (2)

We describe regularization by adding a scaling factor c ≥
1 to (1) before transforming back to probabilities.

f (p) = ln
(

p
1− p

)c

(3)

This introduces nonlinearity into the model. As shown by the
black lines in Figure 2, the composition of (3) with the logis-
tic is a double-sigmoid. A flat region centered at 0.5 is intro-
duced, which is dramatically different from the behavior of
the sigmoid functions mentioned above. The region becomes



flatter and wider as c increases. Consequently, changing the
value in the middle of the range of p causes little change in
the output. The flat region is interpretable as the input range
where there is insufficient evidence for the learner to infer a
regularization-inducing rule. Uncertainty leads the learner to
guess, a behavior seen with learners that fall within the confi-
dence interval around chance in Figure 1.

The scaling factor alone allows the model to produce regu-
larization. However, the model is still rotationally symmetric
by 180◦ around (0.5,0.5). In order to produce different rates
of regularization for Plural versus Singulative conditions in
the 0.875 and 0.75 consistencies, the model must be asym-
metric. The addition of a substantive bias parameter to (3), b
in (4), shifts the center of the flat region to the right or left.

f (p) =
(

ln
(

p
1− p

)
+b

)c

(4)

Equation (5) is thus the final model.

Out put(p|b,c) = 1

1+ e−
(

ln
(

p
1−p

)
+b

)c (5)

The model is symmetric when b = 0. b > 0 moves the output
left (red lines), and b < 0 moves it right (blue lines). Thus, b
shifts how much evidence is needed to form a rule in a partic-
ular direction, describing the preference for one system over
another. An extreme value of b = 2, for example, can push
a learner in the Singulative 0.875 condition (= Plural 0.125)
down to guessing. The model also has the ability to favor a
minority system by manipulating b, an outcome observed for
a few participants. This method of formalizing substantive
bias is neutral about its source, and is consistent with a num-
ber of interpretations. A positive bias favors the Plural, which
is consistent with a preference for a familiar system, or even
a cognitive bias for Plural marking. A negative bias favoring
the Singulative could indicate a preference for novelty.

Using scaling factor c, the width of the flat region can be
manipulated to explain observed differences in regularization
versus uncertainty. The similarity between the Plural and
Singulative 0.625 conditions follows from the fact that 0.625
falls within the flat region for more individual combinations
of b and c than more extreme input proportions do. For the
1.00 conditions, the model analytically predicts that all par-
ticipants will perform at ceiling. Individual biases have no
opportunity to express themselves. This prediction is in qual-
itative agreement with the observation that the outcomes for
the Singulative 1.00 and Plural 1.00 were extremely similar
and displayed little variability.

Figure 2 illustrates the behavior of the model. The model
takes a probability as input and outputs a probability. It is
guaranteed to have fixed points at (0,0) and (1,1). The DSS
captures both systematizing and substantive biases in a frame-
work that can also capture regions of uncertainty. We now
turn to validating the DSS against the experimental results.
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Figure 2: Behavior of the DSS for various parameter
combinations. b < 0 moves the function rightwards from 0.5

and b > 0 moves it leftwards. Increasing c widens the flat
area in the middle and increases the speed of scaling towards

the asymptotes.

Fitting the DSS Model

Fitting Procedure

Model parameters cannot be estimated for individuals in the
1.00 conditions because the predicted outputs in this condi-
tion are always at ceiling. For the inconsistent conditions,
there is enough variability to allow the model to be fit to the
training data for each participant separately. Parameters were
estimated by fitting the models to the training responses made
on each unique training trial using the Levenberg-Marquardt
algorithm (using nlsLM in R).

Criteria

Self-consistency Because participants are a random sample
from the same population, and the parameters represent their
mental state prior to training, there is no reason for them to
vary across groups in their prior expectations for Singulative
versus Plural marking systems. Consequently, the parameter
estimates in each group should be reasonably similar. Initial
parameter estimates which anticipate the presentation condi-
tion prior to any exposure are not plausible, since they imply
that learners were precognizant of the input.
Generalization performance The degree to which the
post-training model output predicts generalization perfor-
mance demonstrates success. Generalization performance
here is the proportion of Plural responses produced on gener-
alization items. We evaluate generalization performance with
the Pearson correlation coefficient R of the predicted values
of the DSS against the output. The relative success of the
DSS is evaluated against a baseline of R = 0.735, which is
the correlation between the input proportion and output.



Results
First consider the distributions of the scaling factor c across
conditions in Figure 3.
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Figure 3: Violin plots of the scaling factor c broken down by
condition. Sides in red are Singulative dominant conditions,

sides in blue are Plural dominant, and they are arrayed in
decreasing order by consistency of presentation.

In general their shapes and modes are close, although there
is some tendency for more variable scaling factors in more
variable conditions. Changes in the scaling factor parameter
thus seem to be more dependent on the input proportion than
on whether the dominant system was Singulative or Plural.
This is a desirable outcome, since participants were drawn
from the same population and a substantial number
regularized in both cases.
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Figure 4: Violin plots of the bias parameter broken down by
condition. Sides in red are Singulative dominant conditions,

sides in blue are Plural dominant, and they are arrayed in
decreasing order by consistency of presentation.

Moving on to the bias parameter b, the conditions are again
generally similar. The most salient difference is greater vari-

ability in the less variable conditions, where the scaling fac-
tor is more variable. This suggests an interaction between the
two factors in the fitting procedure. The means also differ
somewhat by system. However, these differences are rela-
tively inconsequential, due to the low sensitivity of the output
mean to the bias parameter: a change of 0.5 in b results in a
change of no more than 0.1 in the average output.

We now move on to the generalization performance crite-
rion. Generalization performance is shown in Figure 5.
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Figure 5: Scatter plot of the last output of the DSS against
generalization performance, where the y-axis is the

proportion of Plural responses. Red points are Singulative
dominant, blue points are Plural dominant, with the intensity
of the color corresponding to higher input consistencies. The

dashed line is y = x.

Finally, consider generalization performance, shown in
Figure 5. There is a clear, apparently linear relationship be-
tween the post-training output of the DSS and generalization
performance. There is a salient vertical bar at 0.5, indicating
learners who were considered to be guessing. The correlation
is R = 0.859, which is a significant improvement over corre-
lation of R = 0.735 for a probability matching baseline. In
terms of improving prediction of generalization performance,
then, the DSS is successful.

To demonstrate that the model captures the key observa-
tions about the data, we used the model to generate fake data,
as follows: 1) we pooled the distributions of fitted bias and
scaling factors across all conditions. 2) For each condition,
we took a random sample of values from the pooled distribu-
tion 3) We generated the predicted outcomes for those param-
eter values for those conditions. The result (Figure 6) has the
same overall structure as the real data (Figure 1.)

General Discussion
The DSS can explain the main observations in the experi-
ment: ceiling performance on both Singulative and Plural
1.00, more random performance for 0.625 and more regu-
larization for Plural than Singulative in 0.75 and 0.875. The
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Figure 6: Violin plots comparing the output of the model
from randomly sampled parameters of the global parameter

distributions against the input proportion.

by-participant fitting of the DSS to training data yields rea-
sonably consistent results for both scaling factor and bias pa-
rameters. It also predicts generalization performance better
than a probability matching baseline model.

There are implications of the success of the DSS for the
understanding of structural and substantive biases and their
relationship to regularization. The DSS has an explicit trade-
off between generalization and guessing. The evidence has
to be sufficiently high before a learner will generalize, but
critically, the amount of evidence required by any particular
learner may vary. The requisite amount of evidence for reg-
ularization is affected by a preference for more regular sys-
tems (scaling factor) or for particular systems (bias). When
they favor the same direction (as in the Plural), regulariza-
tion results. When the biases pull in opposite directions, as in
the Singulative conditions, their effects interact. Depending
on what system is preferred and how quickly scaling occurs,
a learner will either generalize or guess at chance. Conse-
quently, individual differences manifested more greatly in the
Singulative, leading to guessing in some cases and general-
ization in others.

The success of the DSS is not matched by other classes of
models and approaches to regularization. At their most basic,
neither naive probability matching mechanisms nor naive sys-
tematizing mechanisms prove adequate. They both struggle
to explain the individual variability across conditions.

An obvious mechanism for capturing individual differ-
ences in Bayesian models is the prior. Different classes
of Bayesian models have different formulations of the
prior. One influential class of Bayesian models which have
gained traction in artificial language learning recently is the
beta-binomial class (Reali & Griffiths 2009; Culbertson &
Smolensky 2012), where the prior has the force of some pre-
vious experience. A beta-binomial model can produce regu-
larization through variation in a prior with hyperparameters
α and β, where the prior is equivalent to α

α+β
. One of the

hyperparameters is added to the observed counts of the Plu-
ral, and the other is added to the counts of the Singulative.
Consequently, the hyperparameters function as previous ex-
perience of the systems. The expected value of the posterior
after training is thus (6), where A is counts of the Plural and
B is counts of the Singulative:

α+A
α+A+β+B

(6)

High initial differences in the hyperparameters can cause dif-
ferent rates of regularization. Simulated results of (6) for the
task are presented in Figure 7. It is calculated on the assump-
tion that the prior represents previous knowledge and indi-
viduals differ in the effective strength of this knowledge. The
shaded area represents possible outputs for initial biases fa-
voring the Plural, from no bias (the dashed line) to extreme
(α = 2000, β = 1).
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Figure 7: Possible outputs of a beta-binomial Bayesian
model ranging from no bias (the dashed line) to extreme

Plural bias (α = 2000, β = 1).

Figure 7 shows that outcomes should be most variable in
the Singulative 1.00 condition, since any difference in the
prior will produce values that spread out in the shaded area.
However, performance in the Singulative 1.00 was at ceiling.

This particular problem is indicative of a more general
problem with applying beta-binomial models to regulariza-
tion behavior. No assignment of priors to the population
could produce ceiling in the Singulative 1.00 as well as the
variability in the Singulative 0.875 and Singulative 0.75 with-
out large and systematic initial differences in the prior across
conditions. While individuals are permitted to differ in their
priors on a Bayesian perspective, they should not do so ac-
cording to the condition they were about to be exposed to in
the task. Nevertheless, this is the approach that must be taken
if the prior is the ultimately the source of the variability. For
example, in order to capture cross-condition variability with a
hyperprior, no participants in the Singulative 1.00 could have
a bias against the Singulative, while roughly half in the Sin-
gulative 0.75 must. Given that all participants were recruited



from AMT at the same time, this is highly implausible.
Even a more sophisticated beta-binomial model like the

Bayesian Mixture Model (BMM) (Culbertson & Smolensky
2012) requires significant heterogeneity within and across
conditions to capture the results. In addition to α and β, the
BMM employs weights that uniformly enforce a preference
for unmarked or familiar patterns. Therefore, it predicts as
strong a dispreference for the Singulative in the Singulative
1.00 as in the Singulative 0.875 and 0.75. Yet, the Singu-
lative 1.00 was at ceiling. The Reali and Griffiths (2009)
beta-binomial model uses the prior in a different way. Taking
α = β < 1, they provide a symmetric U-shaped prior distribu-
tion that weakly favors systematizing without favoring either
competitor. Equal levels of regularization are predicted for
both Singulative and Plural conditions, contrary to fact.

The contrast between the success of the DSS and the inad-
equacy of beta-binomial models relates to the larger debate
between connectionist and Bayesian approaches. The DSS
can be interpreted as a simple feed-forward two node neu-
ral network: (4) describes a non-linear (logit) input encoding
subject to scaling and bias, (5) performs a logistic transforma-
tion on the output of (4). Zhang and Maloney (2012) reviews
evidence that probabilities are represented by the cognitive
system on a log odds (logit) scale. Related double sigmoid
models are developed in Madhavan et al. (1995) and Lipovet-
sky (2015), but have more free parameters and different fixed
points.

These observations suggest that a connectionist approach
to regularization behavior might be able to incorporate the
strengths of the DSS model. The reason for this concerns the
characterization of what individuals bring to the task. In beta-
binomial models, individuals begin the task with prior expec-
tations, which are structured probabilistic representations that
presuppose a fully-formed analysis of the input. In the DSS
and connectionist approaches, the free parameters that could
differ amongst individuals need not assume anything about
the form of the input.

Further work is necessary to determine whether a con-
nectionist interpretation of the DSS is the most appropriate.
For now, we note that the success of the DSS argues that a
more abstract representation of prior expectations in language
learning is necessary, one that is not based entirely on previ-
ous experience. The mechanism for producing individual dif-
ferences needs to be more potent than is commonly assumed,
particularly in beta-binomial models. More work is needed
that focuses on modeling on an individual level, so that the
mechanisms can be evaluated by how they capture variation.

Conclusion
The results of Schumacher and Pierrehumbert (submitted) ex-
hibit striking patterns of individual variation. To accurately
capture the data, we presented the Double Sigmoid Scaling
model. Through its shape, the DSS can explain the observed
patterns of variation found in the experiment. The model was
validated against the data, providing consistent parameter es-
timates and better predictive ability for generalization data.

The comparative success of the DSS suggests that more ab-
stract representations of prior expectations in language learn-
ing are needed to understand regularization behavior both at
individual and group levels.
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